
Your App. New. Again.

A CFO’s
Guide to Legacy Applications
Risks, costs, and options.

Do you know the state of your soft assets?

You can see the wear down of hardware and other equipment - but you can’t
see software eroding.

Which leads us to mistakenly believe that legacy software is an “invisible cost”.

Did you know that 70% of IT budgets are spent supporting legacy software?
That’s pretty visible.

In fact….
Check out the numbers on legacy software…

2 - Your App. New. Again | 2016

Among enterprise IT, governments and ISVs
greater than 15 yrs old…

Few problems more ubiquitous than legacy apps

* 74% (and growing) of enterprise IT leaders say “updating/modernizing
key legacy applications” is a “high” or “critical” priority.

3 - Your App. New. Again | 2016

4 - Your App. New. Again | 2016

Software obsolescence is a huge and growing problem.
Technology platforms are constantly changing

IT spends massive resources maintaining legacy software

74% of enterprise IT leaders say “updating/modernizing key legacy
applications” is a “high” or “critical” priority. It’s the number 2 priority.
59% of IT leaders identify this as the top software issue.
Client/server apps have overtaken COBOL and mainframe apps as their
greatest legacy modernization challenge.
Mobile and cloud are the dominant modernization target platforms.
84% of IT orgs plan to seek external help to accomplish this.

Client/server legacy is huge, starting with Visual Basic…
• From 1993 to 2003, 5 million pro software developers wrote custom business Visual Basic applications for IT.
• In that time, they wrote 550K projects per year.
• Do the math. That’s over 50 billions lines of VB code.
• Even now, roughly 250,000 developers still use VB to maintain those apps, costing IT $25 BILLION a year.
• That number doesn’t include C/C++, PowerBuilder, Java, .NET (WinForms, WPF, Silverlight), Delphi,
 and the list goes on…

5 - Your App. New. Again | 2016

Greatest Legacy Challenge Today
Moving client/server apps to mobile/cloud

57% of IT reports
having “serious” legacy

Client/server legacy
is most common

Mobile and cloud most
popular technology
choices

Forrester Research, 2012

Does your �rm have legacy application challenges?

What types of legacy systems present the biggest challenges for your �rm?

How do the following technologies factor into your legacy modernization roadmap?

22.6% (177) 34.4% (270)

19.4% (152) 25.6% (201) 26.8% (210)

29.2% (217)

25.7%(192)

14.6%(109)

19.6%(145)

13.5%(101)

20.5%(152)

21.7%(161)

Already
implemented

Very serious
legacy application
challenges

Somewhat serious
legacy problem

Mild legacy
problems

We don’t have a
legacy application
problem

Rating Average Response
Count

Legacy challenges

In great need
to modernize

Some what
serious legacy
problem

A few of these
to modernize

None of these
to modernize

Rating
Average

Response
Count

Plan to implement
within 12 mos

Plan to implement
beyond 12 mos

Never plan to
adopt

Not sure yet Response
Count

Client Server Apps

COBOL

Early web apps

Mainframe

Mobile

Cloud

Virtualization

Rich Internet Apps

Open Source

SaaS

SOA

6 - Your App. New. Again | 2016

In computing, a legacy system is an old method, technology, computer system, or applica-
tion program, “of, relating to, or being a previous or outdated computer system.” Often a
pejorative term, referencing a system as “legacy” often implies that the system
is out of date or in need of replacement.

Legacy system - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Legacy_system

What is “legacy software?”

 Somebody wrote it years ago
 It is still being used; it still has value
 Years of accumulated technical debt

 Someone has to maintain it
 Visualize duct tape and superglue

Sta�ng is expensive.

Compliance is expensive.

Maintenance is expensive.

Agility is non-existent.

Legacy code is expensive to keep around.

7 - Your App. New. Again | 2016

8 - Your App. New. Again | 2016

Legacy applications require legacy skills.
Skills that are hard to �nd so they’re more expensive. When there are few resources with the
required skills, you can bet you’re going to pay a lot.

That’s why current open systems and platforms not only have an abundance of competitive
talent, but also have readily available support in terms of wiki’s, expert blogs, web sites and
more.

Plus, many legacy applications are built around proprietary, single-vendor platforms.
Modern applications have transitioned to open source tools and programming languages, and
open APIs allowing IT departments to hire employees with generalized experience and skills to
work on a wide variety of applications.

Higher sta�ng costs for specialized talent.

9 - Your App. New. Again | 2016

Compliance can kill you.

Have you heard of HIPAA? Sarbanes Oxley? Those are two examples of (many) US regulations
that require extensive work to maintain compliance.

Applications written 10, 15, 20+ years ago do not conform to current requirements.
Even worse, industry and government regulations change all the time. Five years ago, no one
heard of Meaningful Use, FLSA, ERISA, etc. – now they’re law – and they’re being enforced.

Each year, between 3,500 and 3,800 new government regulations are passed – in the US.
That number doesn’t include all of the regulations being passed by the EU, by individual states
and countries.

Legacy software is the enemy of compliance.

10 - Your App. New. Again | 2016

High maintenance fees. $$$$$.

High maintenance fees for legacy vendors
(i.e. high support contracts for Windows XP) can be crippling. What happens when the
vendor stops supporting your software version? As support expires and warranties end,
costs increase — embedding another hidden cost into supporting a legacy application.

You can try to support it yourself, or upgrade to the vendor’s latest edition.
But, what happens if you can’t (or don’t want to) upgrade? It’s the problem you’ll run into
repeatedly with legacy systems: You lack options. You pay more for sta�ng because your
options are limited. You’ll pay more for support for the same reason.

Higher maintenance costs for supported obsolete hardware are common.
Old infrastructure is expensive and older applications generally require an older technical
environment, which might include old operating systems, databases, libraries, and speci�c
hardware. Just as applications grow more expensive to maintain as they age, so does the
underlying infrastructure. Modern applications that are designed for cloud, SaaS and SOA
platforms don't have this problem.

No agility.

11 - Your App. New. Again | 2016

Cloud has changed the economics of software maintenance but you’ll never know because
you’re stuck on old apps that don’t support it.

Cloud computing has revolutionized corporations that were once dominated by large and
expensive legacy applications.

Not having to host huge datacenters takes a massive capital expense o� the balance sheet
for the CFO and alleviates the need for huge teams of consultants or specialized engineers
reporting to the CIO.

Legacy is di�cult to mobilize
Web and mobile devices have transformed enterprise computing. Old desktop apps not
only tether users to a PC, but they’re hard to deploy. By de�nition, apps that are hard to
deploy will be out-of-date and stale.

Legacy code is risky to keep around.

We’ve already talked about the risk of non-compliance with standards like HIPAA, SOX, PCI.

There are a lot more risks beyond compliance, including security.
How do you keep an app that was written in 1995 secure from malware that is written in
2016? The answer is you can’t. Malware writers are notorious for exploiting unpatched vulner-
abilities.

You’re also always one OS update away from having major application functionality blocked.

A legacy app usually requires a major re-architecting to get around issues like that.

Most likely the legacy platform won’t support what you need.

12 - Your App. New. Again | 2016

13 - Your App. New. Again | 2016

What happens when you give your customers an outdated solution that doesn’t meet their
needs?

Chances are, they’ll �nd a new solution.

Entire industries are going through shakeups right now as a result.
This applies to both software vendors and IT departments.
If an IT department delivers outdated solutions, their users will begrudgingly use them.

But, as soon as they �nd a better solution to meet their needs, they’ll use it in a heartbeat. This is
the problem fueling the “Shadow IT” trend–a big issue in the business world.

You could lose customers.

You do have options for legacy code

1. Rewrite

2. Repair

3. Remote

4. Migrate:
 Modernize - lift and shift valuable code o� legacy platforms

5. Do nothing (kick the can down the road)

6. Replace with commercial o�-the-shelf software
 (eg Salesforce, Dynamics, SAP) aka COTS

7. Stay current: add features, �x bugs

14 - Your App. New. Again | 2016

15 - Your App. New. Again | 2016

Here’s a model for how to think about your
legacy apps - The process and framework for analyzing, prioritizing,
 and modernizing legacy application portfolios.

Technical Quality
Correct (business logic, work�ow, stability) and Current (language, platform, architecture)

Modernize
Mission
Critical

Competitive
Advantage

Unique

Commodity

Noncritical
Shoot & Replace

(C.O.T.S)

Rewrite
Functional Fail. Need:
 Business Logic
 Workflows
 Features

Migrate
Preserve IP. Update:
 Language
 Frameworks
 Architecture

Repair
 Bugfarm Fix:
 Agile Methodology
 QA Process
 DevOps

Remote
Same app, just slower
 Virtualize/Emulate
 Cheap & easy
 Still obsolete code
 No new features

Support & Maintain
 Stay current
 Add features
 Fix bugs

Do Nothing
(lowest budget priority now...)

Liability Technical Debt Asset

Bu
si

ne
ss

 V
al

ue

Your CIO knows what’s up.

 74% of IT leaders say updating/modernizing key legacy apps
 is high or critical priority

 Over half view this as the TOP software issue

 Client/server legacy is now larger than COBOL

 $25B annually to maintain legacy VB apps

 Plus: PowerBuilder, Silverlight, classic ASP.NET

16 - Your App. New. Again | 2016

17 - Your App. New. Again | 2016

Sometimes you have to rewrite from scratch.

For strategic reasons:
 If your app IS your business (e.g. if you’re Facebook or Amazon).
 If you want to add complicated or complex features.

For technical reasons:
 The code is bad, poorly written, unsalvageable.
 Your code depends on obsolete libraries that are no longer available.

BUT...

before you decide to
rewrite from scratch,

you should understand
the risks and costs.

18 - Your App. New. Again | 2016

The problem with manual rewrites.

19 - Your App. New. Again | 2016

Standish Group Findings

They fail a lot.
60

50

40

30

20

10

0

Failed

Challenged

Succeeded

1994 1996 1998 2000 2002 2004 2009

But mostly, manual rewrites are expensive.

20 - Your App. New. Again | 2016

It’s going to cost between $6-$23 per line of code written.

And you’re going to get a bunch of bugs.
And bugs are expensive.

Even the best developers create bugs

21 - Your App. New. Again | 2016

Typically 20 – 50 new bugs per thousand lines of code (KLOC).

A 100KLOC project will have 2000 – 5000 bugs to �nd, �x, and test.

Many of those bugs will not be discovered before the product is delivered.

What are the risks created by post-deployment defects?

Where do the bugs come from?

22 - Your App. New. Again | 2016

Design errors make up 30-60%.

Coding errors make up 25-40%.

Design errors take an average of 8.5 hours to �x.

Coding errors take an average of 3 hours to �x.

Data errors take an average of 6.5 hours to �x.

What conclusions should you draw?

23 - Your App. New. Again | 2016

Manual rewrites are risky

Software projects = Russian roulette

It might be ok, but the odds are terrible

Bigger projects = more risk

Too many unknown unknowns

It can happen to anyone

No one starts believing they will fail miserably

A rewrite should be the last recourse, not the �rst.

24 - Your App. New. Again | 2016

There IS a better way.

Consider automated migration

25 - Your App. New. Again | 2016

Automated migration preserves functioning code without introducing new bugs
and feature creep.

After migration, you can refactor poor code.

This keeps the system running, on a new platform, while you clean things up.

You get:

 Predictable budget

 Predictable schedule

 Covered in glory for a well-managed project

Automated Migration

26 - Your App. New. Again | 2016

70% chance of failure or missing key
goals

Opens the door to feature creep

Poor requirement specs are common

10-50 new bugs per KLOC

Many bugs are never discovered
before release

Recoding key business logic can
create critical errors

Costs 75% less than rewriting

Keeps business logic intact

Does not introduce new bugs

Completed in months, not years

Removes feature creep from equation

No requirements specs needed

Creates real code as if you wrote it

Preserves comments and names

Rewrite

Pros and Cons

New custom app development

27 - Your App. New. Again | 2016

In developed (i.e. onshore*) markets, an average fully burdened developer costs
$150K per year, writes 5000 lines of code per year at a cost of $30 per line of code.

How did we do the math?
($150K per year avg fully burdened developer cost) divided by (20 debugged
lines of code / workday times 250 workdays/year = 5000 LOC/year) = $30 / line
of code

There are also some big downsides to this approach but the main one is that 70%
of new app dev projects fail.

*US, Canada, Europe

Manual rewrite using developed market resources

28 - Your App. New. Again | 2016

Using your existing application as a spec can cut the cost of a rewrite by half but
it’s still $15 per line of code.

How did we do the math?
Using your legacy application as the spec can double the productivity compared
to green�eld app development = $15 / line of code

Hope you like bugs, because you’re going to have a bunch of them: Developers
write between 10-50 bugs per 1,000 lines of code. On 1M line app, you’re looking
at 10K to 50K regressions introduced in working business logic.

What’s the cost of �nding and �xing them all, and what’s the risk to the business
if you don't? Over time, up to 80% of the cost of software development is �nding
and �xing defects.

29 - Your App. New. Again | 2016

Manual rewrite using o�shore resources

Using your existing application as guidance can cut the cost of a rewrite by half*
and using o�shore resources cuts costs too, but it’s still $7.50 per line of code.

How did we do the math?
Using your legacy application as the speci�cation, o�shore resources at half the
cost of US/Europe can at most cut cost in half again) = $7.50 / line of code

There’s big o�shore project risk. Body shops of large numbers of young coders with
less migration experience, language and time zone communication challenges
have project failure rates around 80%…

*Careful analyses put the real number at 20-25% savings (source: Aberdeen Group
and United Technologies)

Once the code conversion is complete, you can
enhance the app with new features, updated UI

and other improvements.

30- Your App. New. Again | 2016

31- Your App. New. Again | 2016

The application can be re-factored and re-architected
via automation tools to make the new application

multi-tier and cloud-enabled

Presentation Tier
(User Interface)

Logic Tier
(Business rules and processes)

Data Tier
(Database storage and retrieval)

32 - Your App. New. Again | 2016

You will get a full-functioning application that works on the new platform.

The beauty of using an automated code conversion tool
 is you are guaranteed to succeed.

33 - Your App. New. Again | 2016

Every day thousands of developers use Mobilize.Net
modernization tools to transform important
line-of-business applications from old systems to
modern platforms.

“We estimated our project, and Mobilize did it for 20% of our estimate for a
ground-up rewrite. We got state of the art architecture that we can build on
going forward.”
Chief Architect, F1000 company

“When the Mobilize team walked me through the generated code in my new
application, I was really impressed by the way they solved tough problems.”
Development Manager

“We tried to rewrite this old VB6 app as a modern Web app twice and failed
both times. Mobilize got it done in 6 months—I wish we had gone with them
�rst.”
Project Manager, F500 company

34 - Your App. New. Again | 2016

High Risk

High Cost

Time-Consuming

BAD IDEA

Low Risk

Low Cost

Speedy

GOOD IDEA

Rewrite Migrate

35 - Your App. New. Again | 2016

Find your estimated costs

We’ve developed a calculator where you can calculate

your development costs for a rewrite vs a migration.

You can use real numbers from your projects.

See your savings here:
http://mobilize.net/solution/rewrite-calculator

36 - Your App. New. Again | 2016

Chances are good you know someone….

Check out the full list at:
 http://www.mobilize.net/resources/customer-list

Who’s chosen automated migration over manual rewrite?

37 - Your App. New. Again | 2016

Need more help?

You can also use our assessment tool to help you �gure out costs:
http://mobilize.net/modernization-assessment-tool/

Let a Mobilize.Net migration engineer help you �gure out how to
convert your legacy application:

http://mobilize.net/talk-to-an-engineer/

Migrate to web, mobile & cloud

38 - Your App. New. Again | 2016

Want to go to the movies?

We’ve got some stellar youtube videos to help you learn.

Watch and learn about this customer’s project:
https://youtu.be/HcXc6KdBV4A

Webifying Windows apps with Keith Pleas:
https://youtu.be/CD-uVgwiBr8

Your App. New. Again.

www.mobilize.net
+1.425.609.8458

info@mobilize.net

Mobilize.Net
10500 NE 8th St., Ste 725

Bellevue. WA 9804

