

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 1

“Hello World” Tutorial for
WebMAP
Transform classic Windows apps to web and mobile.
WebMAP, the industry’s number one tool for mobilizing
Windows applications, is available on-demand at
studio.mobilize.net. Try it now.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 2

Contents
Section 1: Introduction ... 3

Prerequisites: .. 3

Setup: .. 3

Sample files: .. 3

Section 2: Exploring the Windows Forms app ... 4

Section 3: The Web is not Windows .. 5

Section 4: Migrating the app .. 7

Step 1: Create a New Solution .. 7

Step 2: Download and Run the Assessment Wizard ... 7

Step 3: Review the assessment results .. 8

SideBar: Why isn’t Hello World all green? ... 8

Step 4: Configure the Migration Options ... 10

Step 5: Upload Files .. 11

Step 6: Review the migration results ... 12

Step 7: Explore the solution structure ... 15

Step 8: Review the HTML ... 17

Step 9: Review the CSS .. 19

Step 10: The business logic .. 20

Section 5: Overview of the ASP.NET MVC Environment 22

Concept 1: Code Running in a Context ... 22

Concept 2: Overall Sequence of Events ... 23

Concept 3: The ViewModel ... 26

Concept 4: Controller Classes ... 28

Concept 5: The View ... 29

Section 6: Conclusion .. 29

Section 7: Resources .. 30

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 3

Section 1: Introduction
WebMAP converts your C# application to HTML5, creating a web application that can be run locally
or in the cloud.This tutorial walks you through a simple “hello world” application in C# that gets
migrated to a modern web app with WebMAP.

Prerequisites: • Windows 7 or 8.1
• Visual Studio 2013 with TypeScript 1.4 installed

Setup: Open the zip file and extract it to a local drive. Notice there are two
directories:

• WF: this is the C#/.NET/Winforms version of the app—it’s where
we will begin

• Web: this is the app after migrating it with WebMAP. It’s where
we will end up.

Sample files: Use the sample files to run through the tutorial.

Winforms version:
http://www.mobilize.net/hubfs/Downloads/WinformsHelloExample.zip

WebMAP version:
http://www.mobilize.net/hubfs/Downloads/WebMAPMigratedSolution.zip

mailto:info@mobilize.net
http://www.mobilize.net/hubfs/Downloads/WinformsHelloExample.zip
http://www.mobilize.net/hubfs/Downloads/WebMAPMigratedSolution.zip

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 4

Section 2: Exploring the Windows Forms app

1. Open the WF directory and double-click the HelloExample.sln file to open it in Visual
Studio.

2. Build and run the solution in Visual Studio.

private void button1_Click(object sender, EventArgs e)
 {
 // Say Hello to user
 MessageBox.Show("Hello, World");
 // Fetch current time, add to listbox
 string now = DateTime.Now.ToString();
 listBox1.Items.Insert (0, now);

 }

This is a simple app that has four
elements: a button, a list box, and a
message box. The code associated
with Form1.cs looks like this.

When you run the application, it looks
like this.

When the user clicks “Say Hello” a
message box is displayed with the
words “Hello World”

And the date and time of the button
click is added to the list box. Full stop.
Nada mas. As simple as it gets.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 5

Section 3: The Web is not Windows
Before we dive into our migration to the Web, let’s talk through a few of the differences between a .NET
application and a Web application. The fundamental differences between the two will account for most of
the changes you see in the application source code after migration.

The single most jarring difference is that a Windows application runs on a single physical device; that is,
the code, the objects, the processes, and the presentation are all on your PC1. The entire ecosystem of the
application is tightly bound and highly deterministic. But on the Web applications run in dual
environments: a Web server which is frequently hosted on a virtual machine perhaps in a public cloud like
Azure or Amazon Web Services, and a browser which is on the physical device accessed by the
application’s user.

 Windows Web using WebMAP
Memory Local machine; private to

process
Web server; shared by all
simultaneous sessions

Storage Local storage (“C:\”); built in API
for easy access to read and write

No local storage; requires use of
BLOB or DB for persistence

User configuration Windows Registry Nothing; must be created in DB
Simultaneous users/sessions 1 0 to many
Network required None except when accessing

network resources like DB
Always except in cases where
app runs in localhost

OS Windows Vista or newer Server runs on IIS; app can run
on any OS

OS access via API Easy with PInvoke Difficult to impossible
Hardware access Easy with API Not possible
User input Known to be keyboard and

mouse
Unknown; usually has to support
keyboard, mouse, and touch

User experience Rich set of controls from
Microsoft and 3rd parties

Limited set of controls; usually
requires 3rd party JavaScript
framework for rich UI.

Development tools C#, .NET, Winforms, DB C#, ASP.NET, MVC, MVVM,
JavaScript, JSON, AJAX, jQuery,
KendoUI, HTML, CSS, Inversion
of Control (Unity Framework).

Programmer mindset And you thought this was hard! This looks impossible (it’s not
actually)

Some conclusions to draw from this exercise:

• Creating a well-behaved, performant application to run on a browser is a more complex task than
creating a Windows application

• The user piece is more constrained and less deterministic than in Windows
• There are more languages, patterns, and technologies you need to know about

1 “Windows application” in this case means software written in C# using the Winforms designer and the .NET
runtime. In reality a Windows app can be running on a variety of devices—PCs, Windows Phones, Windows
Tablets, or embedded systems using development systems like WPF and Silverlight. However, since WebMAP
currently only supports C#/Winforms we will limit ourselves in this discussion to apps written for the PC.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 6

• If you were to start from scratch to build something like this it could be a daunting task
• WebMAP makes a lot of this really simple.

With that in mind, let’s migrate our Hello World app to this Brave New World of the web.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 7

Section 4: Migrating the app

Step 1: Create a New
Solution
This is your portal to app migration
to the web. From the home screen
you can create a new solution to
analyze and migrate; review existing
solutions; or check out the demo
apps.

1. If you haven’t already, go to
http://mobilize.net/register and create an account.
There’s no charge or obligation to do this.

2. Once you’ve activated your account, log into
https://studio.mobilize.net.

3. We will start by clicking on New Solution.

Step 2: Download and
Run the Assessment
Wizard
Before we can perform a migration
we need to run our assessment
wizard on your code to see how
ready it is to migrate to HTML5.

1. Click Download from the explanatory dialog box. (The
Wizard uses ClickOnce technology from Microsoft.) In
Chrome or IE, just run the installer. In Firefox, you have
to save the installer and start it from Windows
explorer.

2. You’ll need to log in to the Assessment Wizard to
connect your assessment to the right account.

3. Use the same credentials you used to log into
studio.mobilize.net.

4. Now we need to point to the .NET solution we want to
migrate to the web.

5. Click the browse button and then pick the
HelloWorld.sln file in the directory where you
unpacked it.

6. Change the suggested name if you wish; this is how
the solution will show up in studio.mobilize.net.

The assessment wizard collects metadata about your .NET application and sends it to our secure Azure
based analysis engine. We can tell you how big your application is in lines of code, which specific
components and classes (APIs) you’re using, and more. Inside the solution directory on your hard drive will
be a folder called Assessment; inside this folder you can read the XML files showing what data is collected.
Spoiler: it’s not as exciting as The Lord of the Rings.

Once the wizard is finished, it will close automatically and re-open the studio session.

mailto:info@mobilize.net
http://mobilize.net/register
https://studio.mobilize.net/

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 8

Step 3: Review the assessment
results
At this point the assessment should be complete and
you should be in a new browser tab showing the
results. Here’s what you need to know:

1. The first thing is how “ready” it is to
migrate to HTML5. In this case we see
that this app is about 93% green—this
represents the amount of work you save
through automation moving .NET classes,
forms, controls, properties, and methods
over to HTML5 UI.

Figure 1: Assessment results for Hello World sample app

2. The yellow on the pie chart represents
properties, methods, and events that
could be mapped to HTML but aren’t
automated yet. We track the occurrence
of these across the universe of metadata
so we can plan our product roadmap. If
you have “yellow” PMEs that you would
like to see get automated you have a
couple of choices: you can wait until we
notify you that we have now mapped
some of your PMEs, or you can engage
with us for a specific set of mappings to
accelerate your migration.

3. The red area represents things that won’t
be mapped, things like accessing the
local file system or Windows registry.
These will require some level of redesign
to get the equivalent functionality in a
Web app.

SideBar: Why isn’t Hello World all green?
It’s true, something as simple as Hello World doesn’t come up all greenish in our assessment.

What’s going on here? Shouldn’t all the code—all three lines of it—migrate to the web perfectly?
(Remember that although we only wrote three lines of “logic” code, by creating a Windows Form Visual
Studio created some design code to handle the instantiation and processing of the form itself.)

In a perfect world, yes, but in reality if we investigate our .NET code we will see some things that don’t or
can’t migrate. This doesn’t mean our app will be broken, however. In short, .NET does (by default) some
things that either can’t or currently don’t migrate to HTML. Let’s look at one example of these to
understand the pattern:

• System.Windows.Forms.ContainerControl.AutoScaleMode is a property used by Windows to
handle monitors with different resolutions; 96 dpi, 110 dpi, and so on.

• The purpose of the property is to allow Windows to try to make forms “look right” regardless of
the native resolution of the monitor they are being rendered on.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 9

• This functionality, which is no doubt cool, nevertheless doesn’t exist inside a browser, where you
have different approaches and solutions to scaling or supporting different form factors.2

In a large application, the few lines of code created by .NET that are not transferrable to the Web wouldn’t
represent a significant percentage of our code in this assessment report. Since our Hello World example is
just 3 lines of code (plus all the generated design code) the pie chart looks worse than normal. For now,
just ignore the yellow and red and let’s go ahead with the migration.

Figure 2: Assessment report options

We have other information here about your app:
• Dependency Analysis
• List of references used in all projects
• Breakdown of the ratio between lines of code

used in forms designers vs logic files
• List of all controls used
• Which APIs are used for each control
• Chronology of this solution.

According to our analysis, this app should migrate easily
to HTML5 with WebMAP. Let’s do just that.

2 For example, you can use Bootstrap to create a responsive design. But this tutorial will not cover that, as the
version of WebMAP being described here doesn’t use it.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 10

Step 4: Configure the
Migration Options

1. From the Summary Page, click the “Migrate” button.

Before our migration can begin,
we have to set a couple of
configuration options.

Generate fonts

• Generate Fonts will create a css file for each converted form’s HTML
file with font declarations taken from the font properties in your
Winforms designer files. Set to “False” (default) the fonts are only
declared in the site.css file. What does that mean exactly? Well if you
use the default option WebMAP will create font declarations only in
the site.css file; this means that your web app will use a basic set of
default fonts, and whatever font properties the Windows forms had
will be ignored.

• The font declaration from using the default on the default option
(from site.css) looks like this:

• font-family: Sans-Serif, "Segoe UI", Verdana,
Helvetica, Sans-Serif;

• This is a common way to handle fonts in a web page—picking a
family and letting the browser pick from what’s available.

• Setting “Generate Fonts” to True will cause font declarations to be
created in each individual form’s CSS file; those declarations will be
identical to the ones used in the Windows forms designer from your
app. Of course, when a browser tries to render the resulting HTML it
may not find that font and will substitute a default font instead.

Code separation

• Code Separation lets you choose between having the least amount
of JavaScript on the HTML client to keep the app small, or trying to
minimize server roundtrips by creating JavaScript to handle form-
side processing, such as simple calculations and field validations. If
you select “Speed” WebMAP will attempt to determine which event
handling code can be translated to JavaScript without incurring a
server round trip, resulting in potentially a faster client-side
experience but with more JavaScript to maintain.

For now, leave the defaults and click “Next”.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 11

Step 5: Upload Files
Up to this point we have only uploaded metadata about the
app to the studio, not any source code.

Figure 3: Drag and drop file upload

1. To start the migration, first we have to create a zip file with
all our app source code and then upload that to the
migration system.

2. Switch to Windows Explorer and go to the directory where
you unpacked the HelloWorld app. Select all the files and
folders and put them into a ZIP archive. (Did you
remember to build and run the app? WebMAP needs a \bin
directory with a compiled version of your application in
order to migrate it).

3. Grab the resulting .zip file and drag it onto the browser
icon which has studio.mobilize.net open. Alternatively,
click the icon in the “drag and drop” area inside studio and
browse to the zip file. 3

4. This starts the upload process to our secure Azure storage;
once the files are uploaded we can start the migration to
HTML5.

5. Click “Migrate” to begin the migration process.

3 As you can see in the screenshot above, if you have trouble with the drag and drop functionality, you can get
some one-time-only FTPS credentials to upload your files.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 12

Step 6: Review the migration results

Figure 4: You'll get this email when your migration is finished

The migration of your app
runs in Azure as a web job.
The time to complete
depends on where your job
is in the queue, how big it is,
and other factors. Once it’s
queued, you can watch a
progress indicator, or you
can go do something else.
When it’s finished, you’ll get
an email.

Figure 5: New tabs appear after the migration

1. Let’s return to our
solution at
http://studio.mobilize.ne
t.

2. You should now see two
new tabs in the web
page: “Compare” and
“Preview:”

mailto:info@mobilize.net
http://studio.mobilize.net/
http://studio.mobilize.net/

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 13

Figure 6: File structure compare

3. Let’s click on “Compare”
to see how our app
changed.

4. Here you see the
original C#/.NET app on
the left (“Old Files”) and
all the migrated files on
the right (“New Files”).

5. Click on the right arrow
to expand the left-hand
column.

Figure 7: Code compare

6. Click on Form1.cs under
“Old Files” and expand
the right hand column
to see the old and new
source code for
Form1.cs.

7. If you expand the left-
hand column again and
click on
Form1.Designer.cs,
you’ll see how the
Winforms designer file
was converted to
HTML5.4

4 This is, as will be apparent in subsequent sections, a gross over-simplification.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 14

Figure 8: Preview screen

8. Click on the “Preview”
tab and you’ll see an
approximate rendering
of your form as HTML. It
won’t look perfect
because many things
are not created until the
source code is compiled
and executed.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 15

Step 7: Explore the solution
structure

After the migration we get a newly architected
application. Before it was Windows client-server.
Now it’s much more: ASP.NET MVC 4 Single Page
Application with KendoUI.

Figure 9: Project structure of migrated app

1. Let’s look at the source code and see what
the changes are.5

2. Open the Web directory in the demo folder,
then open the Migrated Solution folder.

3. Click the migrated solution
(HelloExample.sln) file to open it in Visual
Studio 2013.

4. WebMAP has created an ASP.NET/MVC4
single page application with some additional
bits and pieces.

5. Let’s look at the application’s structure
before we dive into the code:

Note: The application uses Nuget for package
management. Your project depends on several
Microsoft assembly libraries that are
inconvenient for you to gather manually – items
such as WebMAP helper classes, JQuery, Ajax,
and the special build of the Unity dependency
injection container that comes with ASP.NET
MVC. This package manager ensures that all of
these are downloaded to your development
machine. If you care, you can open the
packages.config file to see which ones it’s
fetching for you. Otherwise, forget about it; you
shouldn’t have to touch it during your project.

5 Once the code has been migrated in http://studio.mobilize.net you can use the “Compare” view to read the
source code, but you will only see a limited set of files. This is similar to the “Look Inside” view that
Amazon.com uses for books. To get the source code, click the Buy button and follow the directions. Once the
migration license has been purchased you will be able to download your migrated application.

mailto:info@mobilize.net
http://studio.mobilize.net/

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 16

Figure 10: Expanded project files

Migrated Solution: If you expand the
HelloExample project you will see a LOT of files
and folders:
If you are familiar with the ASP.NET MVC
architecture, some of these items are familiar,
such as Controllers, Models, Views, Scripts,
and so forth. Indeed, WebMAP generates the
ASP.NET MVC template so you will even find
some files from that pattern that aren’t actually
used by our program. You are probably
wondering where the visual elements of your
Windows Forms program have gone, in this
case, the button that we used to invoke our
“say hello” logic, and the listbox used to show
the times.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 17

Step 8: Review the HTML

Figure 11: Winforms designer code--not here anymore

In your Windows Forms
program, these controls were
created by C# statements in your
InitializeComponent method in
the Form1.Designer.cs file.

Where has this gone in our
ASP.NET MVC program?

Figure 12: HTML and CSS files in migrated application code

1. We will find the descendants
of this file in the folder
\Resources. In this case, we
see the files
HelloExample.Form1.html
and HelloExample.Form1.css

Figure 13:Form1.html listing

2. Excerpts are shown in Figure
13. These together are what
make up the view.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 18

<button id="button1" tabindex="1" class=" button1" type="button"
data-bind="events : { click : logic.button1_Click }, ">Say
Hello</button>

3. In the former case, we see the HTML
that, when rendered into a modern
browser, will produce controls
similar to the ones that we had in
our Windows Forms program.

4. We will see in later examples that
this HTML, along with other
information, gets sent from the
server to the browser, and is
rendered to resemble the Winforms
original application.6

<link rel="stylesheet" href="HelloExample.Form1.css" />

5. You can see, for example, an HTML
<form> element with a name
attribute of “Form1”, and a data-title
attribute of the text that our original
Windows form carried. Inside the
<form> element, you see <button>
and <label> elements that should
look familiar. This HTML does not
use a specific tag for a list box, but
the data-role attribute tells the
server to render the described data
in that format.

6 Remember this tutorial uses the KendoUI JavaScript framework, which, in addition to providing an MVVM
architecture on the client side, creates a user experience (UX) similar to the original Windows application.
While this might seem odd for a Web application, some developers would like to move their application to the
Web with the minimum set of UX differences to avoid the need to re-train users.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 19

Step 9: Review the CSS

In the preceding HTML, you saw some, but not all,
of the properties that you had set on your
Windows Form C# control objects.

Figure 14:The form-level CSS file

1. If you look carefully, you can find the height
and width of the form itself, but not of the
button or label or listbox in it.

2. These items are kept in the CSS style sheet, in
this case named HelloExample.Form1.css7,
shown in Figure 15. We saw in the previous
example how the HTML incorporates this
code by reference.

3. The purpose of a cascading style sheet is to
separate the styling of the HTML elements
form the actual page markup, making it easier
to standardize presentation across similar
elements and to update them if necessary. In
your Windows Forms code, when you wanted
to change, say, the width of a button, you had
to find a C# programmer, get him to do that
work, and then recompile. With a .CSS
stylesheet, a designer can simply edit the
formatting instructions with a text editor. This
approach was so successful that its concept
(XAML vs. C#) was adopted for WPF.

4. In this example, you can see the placement
(left and top attributes) and size (width and
height attributes) of the various controls.

5. During the migration, WebMAP attempts to
map the position and styling of the forms and
controls from the .NET version to the HTML
version of the application.

7 When you migrate a Winforms application, WebMAP creates a separate CSS file for each form in your .NET
code. These CSS files will be in the \Resources directory along with their associated HTML files—one of each
for each form.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 20

Step 10: The business logic
OK, there are my controls. Their
instantiation and initial property
settings are covered. Now where is the
code-behind in which I wrote their
behavior?

using System; //More namespaces used in actual code,
removed for clarity

namespace HelloExample
{
 public class Form1
 :
UpgradeHelpers.Interfaces.ILogicView<HelloExample.ViewMode
ls.Form1ViewModel>,
UpgradeHelpers.Interfaces.IDefaultInstances<Defaults>
 {
 public HelloExample.ViewModels.Form1ViewModel
ViewModel { get; set; }
 public IViewManager ViewManager { get; set; }
 public Defaults Defaults { get; set; }
 public IIocContainer Container { get; set; }

 public virtual string Text { get; set; }
 public Form1()
 {
 }

public void Init()
{
}

 [Handler()]
 internal void button1_Click(object sender,
System.EventArgs e)
 {
 // Say Hello to user
 ViewManager.ShowMessage("Hello, World");

 // Fetch current time
 DateTime now = DateTime.Now ;

 // Add to listbox in view
 ViewModel.listBox1.Items.Insert (0, now);
 }
 }
}
Figure 15 Migrated Form1 Code

Your code has been modified by
WebMAP. At the root of our solution
structure, you’ll find a file called
Form1.cs, which is where the
application logic for this form lives. (In
the MVC world, this is called the
Controller8.)
Perhaps it is best to start with the part
that is most familiar. If you look about
halfway down, you will find the
method button1_click. As before, this
is the handler that gets called when
the user clicks the “Say Hello” button.
(Note: the event handler uses a
routing mechanism based on the
control’s name, conceptually similar to
the automatic wire up used in Visual
Basic, so be careful to keep them the
same.)
WebMAP has changed some of the
code. First, we see that the previous
call to MessageBox.Show() is gone. It
has been replaced by the new
ViewManager object, which is defined
in the \Models folder. This is how your
logic code now interacts with
windows that appear on the browser.
In this case, the method
ShowMessage() does more or less
what MessageBox.Show() did,
generating the HTML to display a pop-
up box on the browser.

Wait a minute, where the heck did this ViewManager thingie come from? The answer is that it is injected
into the logic class as part of its construction process. You can see that ViewManager is a get/set property
of class IViewManager. The helper classes will set this property as the logic object is created. The injection
process is discussed in more detail in later sections.

After saying hello to the user, we now get the current date and time. This class has not changed. We now
want to display it in the Listbox, as we had previously.

8 Not to be confused with the Form1Controller.cs file in the \Controllers which has a different function.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 21

The Listbox has moved. It is no longer a member of the logic class. It has moved to be a property of the
ViewModel class, which handles its persistence over multiple ASP.NET web page calls. We will be
discussing the ViewModel class in more detail in later sections as well. The Listbox object still works the
way it used to, it just has moved to a different location.

public HelloExample.ViewModels.Form1ViewModel
ViewModel { get; set; }

How did we get this ViewModel? Look
at the first line of code in the class; it is
another get/set property accessor.

The helper classes inject the
ViewModel as well when the logic
class is constructed. The logic class has
a method called Init() method. This is
conceptually similar to the Form Load
event you would see in Winforms. It
means that the object is not just
instantiated, but that all of its
dependencies are in place, and the
view is now open for business.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 22

Section 5: Overview of the ASP.NET MVC
Environment
Concept 1: Code Running in a Context
The most important thing to understand about the application architecture generated by WebMAP is that
your application’s code is running inside a context. By this, I mean that your object is accompanied by
helper classes that provide services to accomplish infrastructural tasks. There are a number of new pieces
in your WebMAP program that you probably haven’t seen before. Let’s see how they all get stitched
together.

You probably first saw this context-based approach back in the COM+ days, starting around 2000. Your
small standalone COM object got plugged into the new COM+ context, and lo and behold, it could
participate in complex database transactions. In today’s world, you can think of ASP.NET as a context
within which your objects run, providing the infrastructure needed for running in a web server. You can
access that context directly via the HttpRequest.Current and HttpResponse.Current objects. You
can think of WebMAP’s helper classes as another context running inside ASP.NET.

Figure 16 below shows the WebMAP helpers and their relation to the other parts of the ASP.NET stack.
Don’t get too hung up on the individual pieces just yet. They’re shown here now so that you have some
notion of the sorts of things they are doing for you, and have a place to refer back to as your new
knowledge unfolds. The client-side items that live on the browser are on the left-hand side of the diagram,
while the server-side items are on the right. Your code will run almost entirely on the server side.

The items shown in light blue come primarily from ASP.NET and its MVC framework. The WebMAP helper
classes were built to take advantage of their services, mediating them on behalf of your migrated code.
You encounter and work with them in two different kinds of ways.

First, you may interact with them directly. The services you are most likely to use in this manner are shown
in orange on the diagram. For example, you will use its dependency injection capability, the
IIocContainer interface, to locate and instantiate other objects in the framework, and the
IViewManager service interface to control the display of pop-up dialog boxes. The sample application
will illustrate this way of interacting with WebMAP’s helper classes.

Second, and more interesting, are the things that they do on your behalf behind the scenes, where you
don’t usually notice. These services are shown in green in Figure 17. For example, the
IStorageSerializer service automatically serializes many of your server-side objects into and out of
ASP.NET’s session state. Your ASP.NET objects thus appear to your code as if they had long-running
stateful lifetimes as your Winforms objects did, while behaving nicely in ASP.NET’s environment by not
consuming resources between calls. Later in this document, we will discuss how to use this background
functionality from an application programmer’s standpoint.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 23

Figure 16: WebMAP application architecture

Concept 2: Overall Sequence of Events
Before discussing each component, let’s review the overall sequence of events. You can then dig deeper
into the pieces you most care about. Figure 17 shows the events that happen from start to finish when the
user clicks the “Say Hello” button.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 24

Figure 17: Event flow

The button click (1) triggers the handler function in the client-side scripts (2) that the helper classes
provide. The helper classes then serialize the state of the browser’s form into a packet and send it to the
server as a JSON object over HTTP (3). Our focus now shifts to the server side.

On the server, the WebMAP helper classes are invoked by ASP.NET’s MVC mechanism. These classes de-
serialize the JSON packet containing the state of the browser’s form, instantiate the ViewModel object (in

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 25

this case, of class Form1ViewModel, discussed later in this section), and set its properties so that they
represent the current state of the browser’s form (4).

The helper classes now instantiate the logic object (in this case, of class Form1), and the logic object’s
Controller object (in this case, of class Form1Controller, discussed later in this section) (5).

The controller has a handler for each event that occurs on the form. In this case, the only one we have is
for the button1_click. The helper classes now invoke this handler on the controller (6). The controller
places the ViewModel into the logic object (7), and invokes the click handler on that object (8):

// Form1Controller.cs

public System.Web.Mvc.ActionResult
button1_Click(HelloExample.ViewModels.Form1ViewModel viewFromClient, object
eventSender)
 {
 logic.ViewModel = viewFromClient;
 logic.button1_Click(null, null);
 return new UpgradeHelpers.WebMap.Server.AppChanges();
 }

You are now in your logic object’s click handler, the migrated code that you saw previously in Figure 6.
This is the code that the migration tool produced from your Windows Forms code. It should be familiar to
you. This is where you perform your object’s business logic (9), doing whatever it is that you want your
app to do:

// Form1.cs

[Handler()]
 internal void button1_Click(object sender, System.EventArgs e)
 {
 // Say Hello to user
 ViewManager.ShowMessage("Hello, World");

 // Fetch current time, add to listbox

 string now = DateTime.Now.ToString();
 ViewModel.listBox1.Items.Insert (0, now);

 }

In this case, the business logic simply pops up a message box saying “Hello, World.” In the world of .NET
we would simply call MessageBox.Show(“Hello World”) and all would be good. But we’re not in
Windows anymore, Toto. Instead we have a JavaScript framework on our browser (KendoUI) and it has its
own methods for creating a MessageBox-like object. So Form1.cs invokes
ViewManager.ShowMessage(“Hello, World”).

Remember that we have an MVC architecture on the server side? We also have an MVVM architecture on
the client side. So in this instance neither the server nor the client need to know how the ShowMessage()

method will be resolved. It’s only when the view is created from the ViewModel in the browser that some
actual widget is invoked that can display a message. This means that the server code is completely

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 26

uncoupled from the presentation, making it both easy to test and also to modify. For more about this,
check out articles and tutorials on both Model View Controller (MVC) and Model View ViewModel (MVVM)
on MSDN, StackOverflow, or Code Project.
The business logic for this sample app is trivial; a larger, more useful app might have some sort of
database manipulation to perform, perhaps adding or modifying a record based on the user’s input. You
would probably do that right here (10). Finally, your logic code makes whatever modification it needs to
the form’s state based on its business logic. As you’ve seen earlier, this gets done through the ViewModel.
In this case, we add another entry to the list box of the time at which the user said “Hello” (11).

Your logic handler now returns. Your code is finished; you are back in the arms of the helper classes. They
serialize the changes to the state of the ViewModel9 back into a JSON object (12), and return it to the
originating browser, which takes the new state and renders it accordingly as HTML with some jQuery
goodies (13): since the KendoUI JS framework binds the UI to the model, the UI (presentation) is
automatically updated. That is one round-trip cycle.

Concept 3: The ViewModel
You saw your logic code interact with something called a ViewModel. What the heck is that?

The ViewModel is an object that manages the state of your view from one web POST operation to the
next. In Winforms, your code would create an object such as the Say Hello button. That specific object
instance would live on your local PC, maintaining its state internally, staying alive until you were finished
with it.

This direct long-running connection to specific object instances isn’t possible on the Web. Internet apps
work via page posts and requests, or JSON calls to the web server. The object instances don’t survive on
the web server from one call to another; that would kill any sort of scalability.10

However, a client usually makes several related web calls while performing any sort of business operation.
In this case, we’ll probably say hello three or four times, and want to see those times in our listbox. To
provide the client with logically seamless service over these related calls, a web server maintains a session,
a per-user cache of state that retains its values for a limited time. Objects needed to service a web call are
re-instantiated on demand, and restore their internal state from the session state.

ASP.NET provides a mechanism for handling this session state. Historically you had to write code to
explicitly move your web objects’ state into and out of this session state, which was time-consuming and
brittle. The helper classes provide automatic storage and retrieval of your ViewModel’s public properties in
this ASP.NET session state, meaning less work for you.

9 A certain amount of magic and cleverness are involved here in order to minimize the amount of “chattiness”
between the client and server. In brief, the server side attempts to only send the actual changes back to the
client viewmodel. Discussing how that works is beyond the scope of this tutorial.
10 Basically consider that every time a web page sends a request to a server, the server has to think “Do I
know you?” WebMAP uses Inversion of Control (IoC) via Microsoft’s Unity Framework to manage some
persistence of state on the server side. Among other things, it attaches a unique session ID to each web client
running the application.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 27

The ViewModel’s code is shown below. It was generated during the migration process. There’s not much
for you to see or do, which is the main point here. Most of this work is done for you behind the scenes.

// Form1ViewModel.cs

public class Form1ViewModel
 : UpgradeHelpers.Interfaces.IViewModel
{
 // ViewModel's required infrastructural members

 public string UniqueID { get; set; }
 public virtual string Name { get; set; }
 public virtual bool Visible { get; set; }

 public virtual void Build(UpgradeHelpers.Interfaces.IIocContainer ctx)
 {
 this.listBox1 =
 ctx.Resolve<UpgradeHelpers.BasicViewModels.ListBoxViewModel>();

 this.button1 =
 ctx.Resolve<UpgradeHelpers.BasicViewModels.ButtonViewModel>();

 Name = "HelloExample.Form1";

 < business logic code omitted, see next section >
 }

 // ViewModel's other standard properties

 public virtual string Text { get; set; }
 public virtual bool Enabled { get; set; }

 public virtual UpgradeHelpers.BasicViewModels.ListBoxViewModel listBox1 {
get; set; }

 public virtual UpgradeHelpers.BasicViewModels.ButtonViewModel button1 { get;
set; }
}
Example Code ViewModel Class

Our sample ViewModel implements the helper class interface IViewModel. This interface requires the
object to implement the properties Name and Visible that you see. Its base interfaces add the UniqueID
property and the Build method. These are required for automatic state management. 11

When ASP.NET starts a new session for a client, it calls the Build method in your ViewModel. This is where
you do whatever initialization you need to do at the start of the session. In this case, the ViewModel
instantiates the helper class objects that represent the data stored in the ListBox and the Button12. It does

11 Note that the ViewModel is a si*mple POCO object, with no business logic. If you start writing IF or CASE
statements in this file, you’re probably not following the MVC pattern.
12 If you look at Program.cs—which is the main entry point for the program—you will see Container.Resolve
instead of New. This is necessary to inject the state management into the application.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 28

this via the injection container, hence injecting the dependencies of these objects. It places these helper
class objects into properties of the ViewModel. The value of the property Name is also set. The Build
method is only called at the beginning of each client session. In that sense, you can think of it as your
session constructor.

That is all you have to do. When you make changes to these properties (adding an item to the listbox,
changing the name string), the helper classes automatically serialize them into your ASP.NET session state.
When the next request comes in from the client, causing the ViewModel object to be re-instantiated, their
state is automatically fetched from ASP.NET and deserialized back into the objects. If you’ve ever worked
with ASP.NET session state, you will appreciate what a huge advance this is.

An ASP.NET session always has a timeout value (default, 20 minutes). After that amount of time, the
session state is dumped. In this case, the Build method does get called when the client makes its next call.
It is up to you to determine which data should live in the volatile session state, versus which belongs in
persistent storage in a database.13

Concept 4: Controller Classes
WebMAP uses ASP.NET’s Model View Controller (MVC) architecture. This requires the provision of a
controller class. The purpose of this class is to be a piece of glue, if you will, to accept the incoming
requests from the browser and route them to the correct method calls on the correct objects on the
server. You do not need to write a controller class. It is generated by WebMAP when you do the migration.
Nevertheless, it is instructive to examine this code, to see what it is doing behind the scenes on your
behalf. You will find it in the Controllers folder of your migrated project. Code for Form1Controller.cs
shows the code for this class.

Look at the bottom of it first. You will notice that the controller is tied to a particular logic class. This class is
instantiated and injected into this controller by the helper classes when a request comes from the
browser. That’s part of step 5 of Figure 18 (Event Flow). The controller contains a method for handling the
click on button1. In a more substantial program, there might be more controls capable of causing a post.
In this case, the controller would have a handler function for each of these.
After instantiating and initializing the controller object, the helper classes call the click handler method.
Let’s look at this a moment. The controller is passed the ViewModel object as a parameter. It sets that
ViewModel into the logic class, then calls the logic class’s click handler. Finally, the controller’s handler
returns a value called AppChanges. If you drill into this, you will see that this is a serialization of all the
state that has changed in the ViewModel in response to the logic class’s operation. This is what the
browser needs in order to show the correct state of its form.

// Form1Controller.cs

public class Form1Controller
 : System.Web.Mvc.Controller

13 This tutorial is based on a trivial sample app; in a “real world” application typically you begin with user
authentication—one assumes you have an existing relationship with whomever is using the application. Also
typically you would hold some specifics in persistent storage (ie a database) rather than just in session state.
The latter is useful for streamlining the actual session when the application is in use, but useless for
maintaining anything interesting between sessions. These things are not demonstrated here, however most of
that code should just migrated straight across from C#/.NET to ASP.NET using WebMAP.

mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 29

{

public System.Web.Mvc.ActionResult
button1_Click(HelloExample.ViewModels.Form1ViewModel viewFromClient,object
eventSender)
 {
 logic.ViewModel = viewFromClient;
 logic.button1_Click(null, null);

 return new UpgradeHelpers.WebMAP.Server.AppChanges();
 }

 private HelloExample.Form1 mLogic ;

 public HelloExample.Form1 logic
 {
 get { return mLogic; }
 set { mLogic = value; }
 }
}
Controller Class

Concept 5: The View
Let’s now discuss the view on the browser side. Remember, we are moving to the web from a desktop
client application. Users who are accustomed to the desktop client are expecting some sort of form in
front of their eyes that more or less stays where it is. They aren’t expecting a lot of jumping around, as
most basic web applications do, by posting pages back and forth and generating new ones.

To meet these expectations, WebMAP uses the strategy of generating a single page application. As we
saw previously, rather than post the pages back and draw new ones, the single page app uses JSON calls
to make changes in place, as the server-side components alter its contents in response to user input.

The helper classes generate a number of client scripts that run on the browser side. When you migrate the
code with WebMAP, you are offered a choice of more client-side scripting or less. It is not unusual for
developers to experiment with both approaches and choose which works best for them.

Section 6: Conclusion
When migrating a Winforms app to the mobile device platform, time is of the essence. WebMAP from
Mobilize.Net provides a solution that migrates your application as quickly and easily as possible.

Now that you’ve gone through the tutorial, you have a pretty good idea of how WebMAP works and what
it can do for you. If you want to take the next step, you can check out the sample applications to see more
robust code running. Or, you can upload your own projects and take WebMAP for a free test run.

If you have any questions or require assistance, we have a posse of migration architects who are happy to
help. Email us at info@mobilize.net or call us at 425-609-8458.

mailto:info@mobilize.net
mailto:info@mobilize.net

 Your App. New. Again.  info@mobilize.net  + 425-609-8458 Page 30

Section 7: Resources
WebMAP is built on common development standards such as MVC and MVVM. Understanding these
concepts will help you to understand the code that WebMAP generates. Here are some resources to help:

• Model-View-ViewModel (MVVM) Explained by Jeremy Likness
• Understanding the basics of MVVM design pattern, MSDN
• A Really Simple Explanation of MVC by Craig Strong
• Introduction to ASP.NET MVC (Slideshare) by LearnNowOnline

mailto:info@mobilize.net
http://www.codeproject.com/Articles/100175/Model-View-ViewModel-MVVM-Explained
http://blogs.msdn.com/b/msgulfcommunity/archive/2013/03/13/understanding_2d00_the_2d00_basics_2d00_of_2d00_mvvm_2d00_design_2d00_pattern.aspx
http://www.strongandagile.co.uk/index.php/a-really-simple-explanation-of-mvc/
http://www.slideshare.net/LearnNowOnline/introduction-to-aspnet-mvc-14439249

	Section 1: Introduction
	Prerequisites:
	Setup:
	Sample files:
	Section 2: Exploring the Windows Forms app
	Section 3: The Web is not Windows
	Section 4: Migrating the app
	SideBar: Why isn’t Hello World all green?

	Step 1: Create a New Solution
	Step 2: Download and Run the Assessment Wizard
	Step 3: Review the assessment results
	Step 4: Configure the Migration Options
	Step 5: Upload Files
	Step 6: Review the migration results
	Step 7: Explore the solution structure
	Step 8: Review the HTML
	Step 9: Review the CSS
	Step 10: The business logic
	Section 5: Overview of the ASP.NET MVC Environment
	Concept 1: Code Running in a Context
	Concept 2: Overall Sequence of Events
	Concept 3: The ViewModel
	Concept 4: Controller Classes
	Concept 5: The View

	Section 6: Conclusion
	Section 7: Resources

