
Managing State
HTML5 Applications

Written by Kevin Griffin

http://swiftkick.in/

www.mobilize.net Managing State in HTML5 Applications

Overview

Back in 2008, I wrote my first major web application. It was a management portal for a com-

pany who ran a network of campground memberships around the country. Our goal with

the application was to provide an interface and experience that simulated the look, feel, and

responsiveness of using a desktop application. This wasn’t a particularly easy task with our

budget and level of knowledge. Our server technology was ASP.NET WebForms and it wasn’t

particularly well suited for our task. jQuery adoption had grown large over the last year or two

and served as one of the only trustworthy libraries to use for heavy client side management.

Our troubles came from how to best control state in the application. ASP.NET WebForms back

then wanted to control the majority of a page lifecycle. If you clicked on an element, it would

postback to the server. Change a dropdown box? Postback to the server. Press a button?

Postback to the server. The power and flexibility of ASP.NET WebForms came from managing

the entire state. To make our application work well, we had to disable parts of ASP.NET that

wanted to take control even though that meant giving up some of the features ASP.NET pro-

vided.

On the client-side, we essentially had to roll our own framework. jQuery provided a reliable

conduit between elements on our page and our custom JavaScript. We wrote a lot of redun-

dant code for retrieving and setting the value of elements on our page. Event management

was a chore. We lacked a mechanism for maintaining the state of the page and the context of

the elements on it. One hack we used on a regular basis was to inject special classes into our

elements to define meaning. . For example, if you looked a table row for a user listing, it would

likely have a class name userid-XYZ. During runtime, we used jQuery to extract the classes

starting with “userid-“ and pulling the values off of it.

Web applications have really matured since this application was built. We are in a unique

position of having immediate access to amazing libraries and frameworks that have simplified

how we can build robust, scalable web applications. There is no any holy grail though. You

still have to design responsibly with the plethora of tools available to you. In this article, we will

discuss what you should be concerned about when managing state in HTML5 applications

and the tools that are available to you.

www.mobilize.net Managing State in HTML5 Applications

Considerations of Stateless Web Applications

The primary rule for building a web application is that there is no such thing as state on the

server. Every request made by the client should provide enough information for the server to

properly serve up a response.

You might think, “How do applications built with ASP.NET get around this?

They manage state.” Absolutely!

There are a variety of frameworks built to handle these concepts for you. They are all built on

top of the principle that the server only knows how to handle one request at a time, and they

add facades around several of the concepts we will discuss.

For example, imagine you are making a GET request to http://myDomain.com/api/users

This provides the server with two very important pieces of information regarding your intent.

First, you have told the server you are wishing to GET a particular resource. HTTP verbs pro-

vide the server with context of what you’d like to accomplish. GET requests return data. POST

requests create new data. PUT requests update or replace data. DELETE requests remove

data.

Next, you are providing the server with a URL. This is considered an endpoint. The server uses

the URL in combination with the HTTP verb to determine what action should be taken. It is

also possible your request includes some headers. These headers can include information

such as who you are (via a cookie), what data format you’d like to receive the response in, and

if your browser accepts compressed content. The absence or presence of headers can cause

the server to respond differently.

What if you don’t pass credentials? The server may respond with a 403 (Forbidden) status

code. The server can respond with different HTTP status codes to provide clues into what

happened. In some cases, data will be provided, but sometimes you may only receive the

status code.

Since the server cannot reliably know anything about the previous requests we have made,

the majority of the pressure for maintaining state is on the heels of the client.

www.mobilize.net Managing State in HTML5 Applications

Client-Side Management

Importance of Patterns
As client-side HTML5 and JavaScript applications have grown in size, our ability to manage

them has become more of an issue. Single Page Applications are especially concerning, be-

cause the client needs to store as much state as possible.

In the classic days of web development, all the communication between the markup on the

page and the code in JavaScript was the responsibility of the developer. jQuery smoothed

most of the bumps, but it was still the responsibility of the developer to perform common user

interface manipulation. What if you needed to set or get the value of a text box? It was your

job to write that code. What if you needed to populate an empty table with fifty rows? It was

your job to write that code. jQuery simply acted as a mechanism to quickly and easily write

that code all while being cross-browser.

Over the past several years, we have seen many common desktop patterns move to the brows-

er such as MVC, MVVM, and MVP. As an example, Knockout.JS can be easily considered an

implementation of MVVM. Given a page and accompanying JavaScript, the developer could

bind elements of the page to a central model defined in code.

 If the page contained a text box and you changed the value of it, the value would automatical-

ly sync to a variable within code. Additionally, if you changed the value of the variable, it would

automatically sync to the text box on the screen. Dozens of lines of code could be saved by

using the framework.

Even the act of updating a table or repeating element to the contents of an array is second

nature for these type of frameworks. In old jQuery-based systems, each row and cell would

need to be created and appended to each other. With Knockout.JS, you only need to update

the array and Knockout will take care of the rest.

The implementation of patterns allows the developer to concentrate more of the develop-

ment process by implementing repetitive tasks. Each pattern has a defined process for how

to manage state, how to listen for events, and how to communicate back to the server.

www.mobilize.net Managing State in HTML5 Applications

Address Bar
The address bar acts as your first point of contact between the browser and server, and that

role holds a lot of responsibility. The address bar tells both the server and client what the initial

view of the application should be at render time.

Let’s examine the components of an address:

http://myDomain.com/some/server/path#/some/client/path

The pound sign (#) acts as the delimiter for the path. The left side of the URL is the server

path, and the right side is the client path. Server path refers to what the server is responsible

for responding to. In an ASP.NET environment, the URL should direct to an appropriate Con-

troller and Action or a corresponding ASPX file. The page returned by the server will include

references to JavaScript files that will define the client aspect of the application, and process

the client path appropriately.

The client path is used to inform the browser about the current state of the page being loaded.

Think about it this way: what happens when your users press “Refresh” or “Back”, accidentally

closes the browser window, or the browser crashes. What should happen when the user re-

covers from any of these scenarios? Ideally, the page should be able to return itself as close

to the original state of the page before the event happened.

What does this have to do with the address bar? The URL in the address bar is tracked by the

browser, and in most cases, it is the only piece of information available to the browser for state

reconstruction. In a single page application (SPA), the client path tells the browser what the

current view shouldbe or provides the client with additional parameters and state data. For

example, if you are a Gmail user, watch the address bar as you open up emails or compose

drafts. The address bar will track which messages you are looking at and which open com-

pose email views you have open. On a regular interval, Gmail will save drafts and update the

address with a message draft ID. On a page refresh, Gmail can construct the view with almost

a 100% level of accuracy.

Frameworks such as Angular make implementing these routing scenarios easy. What hap-

pens when you have long living views such as those associated with data-entry? It might not

make sense to post data to the server on a regular interval. There are many options available

for storing data across requests to the server.

.

www.mobilize.net Managing State in HTML5 Applications

Client-Side Storage Options
There are numerous methods for storing data locally in the users’ browser.

The two mechanisms that are worth talking about because they are widely available across all

evergreen and legacy browsers.

Cookies

The browser cookie is the longest living mechanism for maintaining state information for web-

site (Netscape implemented in 1994). They provide a simple key/value store for browsers to

save data. The contents of a cookie are transmitted with every request to a domain. Cookies

have theoretical limits depending on the browser you are using. In most case, your cookies

are limited to about 20 cookies per domain and a size limit of 4096 bytes per cookie. After a

little bit of math, you will see that cookies are not particularly well suited for large amounts of

data. Rightfully so, because you would not want to send a massive amount of information to

the server on every request.

Session and Local Storage

The next two mechanisms can be talked about in unison because their APIs are identical.

Session storage is a feature in browsers that allow websites to store data for a users’ browser

session.

As with cookies, we are storing data within a simple key/value store. Data access is extremely

quick, and alleviates the requirement for having to make frequent server calls with updates.

In session storage, the contents of the storage go away once the browser window instance (or

tab) is closed. More easily put, the storage lasts for the duration of the browser window ses-

sion. If the session goes away, so does the storage. There is also no cross-storage between

browser window instances.

Local storage follows the same syntax as session storage, but it is designed to persist past a

browser instance closing. Imagine the above scenario when a browser crashes. If your user is

working within a long living page instance, you can periodically save the data to local storage

and retrieve it after the crash. Additionally, you can report local storage changes across multi-

ple browser instance. A user with a dozen open tabs can keep them all in sync by subscribing

to browser events.

www.mobilize.net Managing State in HTML5 Applications

Storage limits still depend on the browser, but generally you can store up to 5 megabytes per

domain. Developers that need to support back to Internet Explorer 8 can rest assured that the

Session and Local Storage APIs are available.

Other Options
Developers that are living in the bleeding edge might want to also look at WebSQL and

IndexedDB. Both of these options provide a more SQL-like client side database.

Any issues will relate to these features not actively working in common browsers (such as In-

ternet Explorer or Safari). It is recommended that developers tread lightly when exploring the

use of these features in their web applications.

Server-Side Management

As alluded to at the beginning of this article, the server needs to be relativity dumb. Any re-

quest coming into the server should provide the necessary information to accomplish the

requested task. This can bring up several questions on how to secure and manage the server

side aspect of your application.

Authentication/Validation

Authentication in a web application can be quite a daunting subject, and several articles and

courses have been written about it. Building on top of the statement above, security in a web

application simply falls back to the client having to prove it is allowed to access a resource.

Depending on your framework, this functionality might already be taken care for you.

ASP.NET, for example, has a full identity framework built into in. Once you authenticate a user

for the first time, the user is provided a session token or key. Subsequent requests are subject-

ed to providing the session token.

www.mobilize.net Managing State in HTML5 Applications

In cases where your framework does not provide the functionality for authentication, you can

implement a similar scheme by transmitting authorization tokens in cookies or within request

headers. ASP.NET implements security in this fashion. Session identifiers are transmitted

within a cookie, and the framework takes an action of authenticating a user based off of the

session identifier provided. This wheel has been reinvented several times, so it is generally not

good advice to try to roll your own authentication platform.

Mapping State to a Session

Assuming a request is authenticated successfully, what devices are available on the server to

maintain information that needs to be associated with a particular user session? For example,

imagine your application provides a shopping cart experience. The contents of the shopping

cart typically would be maintained by the server.

Frameworks such as ASP.NET provide features that will automatically manage session state

on your behalf. For the shopping cart example, developers can maintain a session object

which holds the cart contents. As items are added, updated, or removed, the code pulls the

current shopping cart from the session, updates it, and restores it back in the session.

In frameworks that don’t provide this functionality, you can implement a similar technique by

keying a session off of the user’s session token. Whenever a request from a particular session

comes in, and that session is properly authenticated, the request session token can be used

to load the session state into memory.

There are different rules of thought about where you should store state on a server.

In Process session storage means that all data corresponding to a session is stored in memory.

Access to the session is extremely fast, but it’s also volatile. If your server crashes, the session

state will fade away.

Also, in a load balanced scenario, In Process cannot work unless your load balancer imple-

ments session affinity (meaning the load balancer will direct requests from a single source to

one machine in the balanced set).

www.mobilize.net Managing State in HTML5 Applications

SQL Databases provide a reliable, persistent data store for session information. In scaled sce-

narios, node can go up and down continuously while having no effect on a user session.

A major drawback of this approach that it can be costly in terms of performance since you

would need to constantly serialize and deserialize data between the server and the database.

In-Memory Databases such as Redis provide the same reliable, persistent data store found

with SQL databases. However, data storage is done in memory and using key/value stores.

Data access is lightning fast comparably.

In-memory databases are often used for state management in web applications. Compared

to in process session storage, in-memory databases work more efficiently in scaled environ-

ments. The database acts as a common backplane for all web servers to communicate with.

ASP.NET Session Storage Best Practices

ASP.NET has had a mechanism for session state since its inception. However, in the ever

growing world of high performance web applications and cloud environments, some devel-

opers have difficulty tuning their applications to take best use of ASP.NET session state.

Here are a couple great tips:

Change your sessions state provider

By default, all ASP.NET applications are configured to use in-process session state. As dis-

cussed above, this can run into a multitude of problems when your application is deployed

into a scaled, load balanced scenario. It is not uncommon for requests to a load balancer to

bounce between various machines in the load balanced set.

In these cases, ASP.NET only stores session state information on the machine which originally

set the state value. Requests directed to other machines cannot obtain access to this session

state. A recommendation would be to use a different session state provider. ASP.NET currently

provides state providers for both SQL Server and Redis.

www.mobilize.net Managing State in HTML5 Applications

While Redis is the preferred backplane for session state, developers will also find SQL Server

an acceptable alternative to in-process.

Limit what is stored in session state

As a worst case scenario, everything you put into session state will be retrieved and deserial-

ized on every request to the server.

Therefore, it is a good plan to ensure you are not putting too much into session state.

As a common rule of thumb, do not store anything in session state that does not need to per-

sist across requests.

For example, you do not need to persist a user profile within session state, because that infor-

mation could be more easily obtained via your identity provider.

Keep the data simple

When using session state, it is important to remember that data will need to be serialized and

deserialized between your application and the data store.

Complex objects make this process difficult, time consuming, and in some cases, impossible.

Stay close to basic data-types.

Do not forget to Abandon

When a user explicitly logs out of your application, make sure to call the Session.Abandon()

method. This method call will remove all session information from your data stores, and en-

sure you are maintaining a clean house.

Do not worry too much though if you forget, because ASP.NET will do this for you automatical-

ly after a session timeout. However, a timeout could possibly take up to 15 minutes or more

to occur.

info@mobilize.net +1-425-609-8458 www.mobilize.net

Your App. New. Again.

www.mobilize.net Managing State in HTML5 Applications

Conclusion

Managing the state of your web application is a continuous problem. Applications are becom-

ing more complicated and feature rich.

Clients and servers need to work in harmony to insure a performant, reliable experience for

the user. We are lucky to live within a mature ecosystem of frameworks and libraries that aim

to solve many of the common problems with building large scale web applications.

As a developer, you can do yourself a favor by following many of the best practices outlined

in this article. Your applications will grow and scale gracefully while leaving you sane and free

of stress!

.

