
1

How to Think about Web Architecture

John Browne

Technical Product Manager

Mobilize.Net

Historically we at Mobilize have focused on tools to transform app source code from
one desktop platform to another, newer, desktop platform—the best known of these
is VBUC which moves VB6 to .NET.

More recently we developed and released WebMAP to move desktop (C#/
Winforms/.NET) apps to a modern web architecture. Because this is such a major
paradigm shift (desktop to web) it leaves some desktop developers scratching their
heads a little when they look at the migrated code and wonder "where's my class/
form/event handler/etc.?"

First of all there are a lot of differences between a Windows app and a web app,
not the least of which is the physical separation between client and server. I wrote
about some of these issues on the Mobilize.Net blog; if you're unfamiliar with web
development this is a good place to start.

In this article I want to explore the architecture that WebMAP creates following a
migration. Since we are using a hybrid pattern pieces of it may be familiar to you but
overall some explanation is called for.

First of all, let's clarify exactly what we mean by the word "WebMAP:"

• A tool for migrating source code from one platform to another

• A set of helper classes in C# that are part of the new, migrated app

• An architecture of the new, migrated app.

The tool is proprietary; the helper classes are included in the created app and are
easily read for understanding; the architecture is the subject of this paper. Note
that you probably won't need to spend a lot of time with the helper classes as they
handle the "under the hood" stuff to make your app run. At least some familiarity will
be helpful when you are debugging your app, however.

Thinking about web architecture

2

One tier or two?

As I mentioned above, the key difference between a desktop app and a web app is
that the web app (and by that I mean the kind of modern web app we create) is a
multi-tier application that is divided into a front end (i.e. client running in a browser)
and a back end (server running remotely in a datacenter or cloud). Another key
difference is that on the desktop you normally have a single user with a dedicated
execution thread and on a web app the server needs to handle multiple requests all
sharing an execution thread. Those two differences make for lots of changes in the
app architecture.

Remember we are talking about applications on the browser, not web pages. Web
pages—even interactive ones—are pretty simple compared to re-creating the
functionality and UX of a desktop app in a browser. For our discussion it's helpful to
assume any app we are talking about is heavily forms-based with a database back
end. In a Windows application a traditional way to handle these kinds of apps was
a "code-behind" approach where events on controls triggered handler code. Even
older ASP.NET ("classic") apps using webforms supported this paradigm.

Front ends and back ends

First consider that the app has to be instantiated as a browser session. This means
either we use some plug-in approach like Flash or Silverlight (both of which are
losing support in modern browsers due to security concerns) or we have to generate
pure standardized code like HTML, CSS, and JavaScript. Those will all run on all
modern browsers and you shouldn't need hacks asking the browser what it can
support, unless deep backwards compatibility is important to you. This combination
of HTML5, CSS, and JS—especially adding on some sort of JS framework—can
create very powerful and completely portable user experiences in the browser. For
our purposes we will use Angular 5 and Kendo—together they create a framework
to handle a lot of the heavy lifting on the client side plus a nice set of Windows-like
controls for our UI.

The back end of the app will still consist of C#, but we are going to use ASP.NET
Core and construct a single page application (SPA) instead of a multi-page app.
Single page apps differ from more traditional web apps in that they only have one
web page (URL) that is refreshed dynamically. A "normal" web app switches from
one page to another with each user action. SPAs rely on AJAX to allow the page to
refresh without having to wait on a page load from the server (the "A" in AJAX stands

Thinking about web architecture

3

for "asynchronous" which means stuff happens without the user having to wait).

Server side code

Let's take the classic Hello World example program to see how WebMAP creates an
web architecture. Using C#, let's create a simple form (form1) with a few controls.
See illustration:

The code is super simple: after creating the form in Visual Studio and setting some
basic properties on the lab and buttons. First we initialize the form, and then we
handle the button click event.

Thinking about web architecture

4

Notice in the classic C# code we are referencing user interface elements directly...
look at the designer file:

This is the very common "code behind" pattern. It's simple to write but can create
some issues later. Patterns like MVP, MVC, and MVVM are all designed to eliminate
the issues with code behind programming. And especially with a web application,
coding practices since the days of Web Forms (classic ASP) have separated the
code (ie logic) from the presentation (ie UI). Using the Microsoft stack, and Visual
Studio, three common ways to write web applications are:

ASP.NET MVC

This pattern let's you interleave C# server-side code with HTML, so, for example,
your HTML could call a C# variable. Simple example:

Thinking about web architecture

5

When this code runs, the value of the variable aboutMessage will be inserted into the
<p> element so the text the user sees will be “Welcome. This is the about page.”

AP.NET MVC creates—assuming you use the Visual Studio app template—folders
for your models (the data representation), Controllers (the traffic cop for routing
URL requests), and Views (the presentation the user actually sees). By default the
template does not create a Single Page Application, instead using URLs like /index
and /about to return fully-built pages to the client (browser).

Thinking about web architecture

6

ASP.NET Single Page Application

The difference between a Single Page Application (SPA) and one that isn't, is that in
an SPA we don't rebuild the entire view model with every request. This is great for
actual applications (not web sites) where typically a request is to fetch some data
used in part—but not all—of the page. Refreshing only that part of the page reduces
the load on both the server and the client, as well as reducing the chattiness of the
app. You can get a rich (but complex) template for these using ASP.NET Core with
Angular, which has the added benefit of being server agnostic, so it can run equally
well on Linux and Windows.

If there's any lingering doubt in your mind about how complex building well-behaved
web apps can be, just look at what the empty shell of an ASP.NET Core app
provides (note these are all things you would have to code anyway):

Thinking about web architecture

7

Web API

The Web API template is really a way to create RESTful endpoints you can hit with
HTTP requests using JSON. Web API is a simpler, faster, more lightweight method
of moving data back and forth from a web server to a client compared to SOAP/
XML web services. The Web API scaffolding doesn't really provide you much help
in creating your client side code, event listeners, or look and feel. That can be done
using classic Angular components, or React or Knockout or whatever you want. Plus
HTML, CSS, and possibly some component library to create controls/widgets, such
as Progress Kendo, or Syncfusion, or whomever.

Ok, so where are we exactly?

Right. It's complicated, isn't it? From our perspective, here you are with a desktop
app (could be VB6, could be PowerBuilder, could be C# with WinForms), and you
want a web version. Desktop apps are so 2000s. But to get that desktop app to a
web version is hard. Sure, you could rewrite it into one of these patterns (or some
other—we haven't touched Java, for example), but they are really complicated.

Well, cheer up Bucky. We've got exactly what you want:

Thinking about web architecture

8

WebMAP to the rescue

The good news is that WebMAP solves most of your problems, by an enormous
amount of cumulative cleverness from our development team.

• You can use coding skills you already have

• You can read the code

• You can add to the code without going crazy

• You can get a high-performance web app that’s actually simple

• And we do it all with source code, not voodoo binaries.

Let’s look at some code

What if we migrated our HelloWorld app from part 1 to the web, using WebMAP?
What would that look like?

Thinking about web architecture

9

Which super-complex method, described in Part 1, did we choose to create this
amazing web app?

None of the above.

WebMAP—like we said earlier—hides a lot of the complexity. Ok, basically all of the
complexity. Let’s look at the server-side code (remember a web app has to have a
server component and a client that runs on the local browser):

If this code looks suspiciously like Winforms code, it’s by design. In fact, there are
only a few subtle differences between this code (which is now running on ASP.NET
Core) and the original C# code (which ran on Windows desktop only):

1. The Form1 class inherits from Mobilize.Web.Form (we’ll get back to that in a
minute)

2. The form declaration has an attribute: [Mobilize.WebMap,Common.Attributes.
Observable]

Thinking about web architecture

10

3. There are no “using” statements.

That’s it. No controllers, no views or viewmodels, no models, just what appears to be
almost exactly the same code that worked for a desktop app. How is this possible?

My favorite things...

I love packages: both the kind I get from Amazon and the ones that handle
dependencies in my apps. Let’s look at the packages that our migrated HelloWorld
app has:

Ok, so this should make me pretty happy—lots of packages. And this is where
the magic happens in WebMAP—these DLLs let the server side code be highly

Thinking about web architecture

11

decoupled from the web server housekeeping and the client side.

The Form class

Again—staying with the server side—the Mobilize.Web.Form class is used to
instantiate all our forms, build the UI, and handle events. If we look at the Object
Browser here’s what we’ll see:

Some of these methods and properties should look pretty familiar (Show(),
CancelButton, etc) and some not (_Mobilize_GetChanges()). Remember, the
goal of WebMAP is to migrate your Windows Forms apps to web, so we aren’t going
to have a bunch of properties or methods for classes that aren’t representative of

Thinking about web architecture

12

what you find in Windows. (NB: WebMAP can support a variety of input formats,
including non-Windows stuff like PowerBuilder. For the purpose of this blog,
however, let’s just focus on Windows Forms.)

Observable, Weaving, and AOP

The other big change referenced above is the Observable attribute we see for the
class Form1.

Now you’ve got to get your geek on.

The Observable attribute flags this class as one that will be monitored for changes.
In short, when our app is running on the browser, we need a way to know that the
user has done something—basically the same idea as “listening” for an event in the
DOM in JavaScript. Our SPA we’re building wants to send changes (ie state deltas)
back to the server as JSON messages. An Observable object is something we
monitor for changes.

Likewise, in our designer file (Form1.Designer.cs), we’ll find a different attribute
on the class: [Mobilize.WebMap.Common.Attributes.Intercepted]. In this class
we create all the visual controls that will be on our form. The Intercepted attribute
tells the Visual Studio compiler that this is a place to inject code.

You’ve probably used inversion of control (IoC) AKA dependency injection in code
somewhere, right? Well, this is very similar. You may already be familiar with it:
Aspect-oriented programming or AOP. AOP allows us to “de-clutter” the code you
have to deal with from all the complexities needed to handle issues common to web
applications. Like, for example, modality.

Thinking about web architecture

13

WebMAP takes advantage of the open-source “Roslyn” compiler platform in Visual
Studio. Among other things, this platform offers real-time code parsing (which is how
Intellisense works). WebMAP uses that capability to inject code from helper classes
into “Intercepted” code and create new, expanded C# files. Since the compiler front
end is running all the time, as you edit those user-facing C# files, these expanded C#
files are always being changed as well. Press F5 to kick off a build and the compiler
knows to use the expanded files—not the files you were editing—for the build
process. Injecting these classes where necessary is what we mean when we talk
about “weaving.”

Ok, that sounds really complicated. But it’s not really. So let’s get to it.

Thinking about web architecture

14

All the rest

Before we jump into the last installment, let's briefly review what we leaned so far:

• Web apps are complex by nature

• Moving from desktop to web is also complex

• Web app development can require you to learn a bunch of new stuff, compared
to Winforms apps

• WebMAP uses super cool rocket-powered tech to make it easy to move to the
web

• WebMAP uses weaving so you can work on familiar code while the web
complexity is hidden.

A few more words on weaving

Ok, so about all that weaving. First of all, aspect-oriented programming (AOP)
isn't a new concept—it's been around for years, although possibly more familiar
to Java developers than C# devs. Tools like Postsharp have made code injection
for C# easier, but the Roslyn compiler was really the game changer. Roslyn made
AOP easier because you could rewrite the code before compilation as part of the
build—rather than having to massage the IL after the compiler was through with it.
The other thing Roslyn had to do to make AOP simpler was to make sure debugging
wasn't hosed—you want to debug the original "undecorated" code, not the rewritten
code.

It's beyond the scope of this blog post to dissect the rewritten code—you can
see it for yourself in the \obj folder. I can tell you our simple form1.cs file grows
substantially when all the attribute code is injected. Sure that code could be in the
original source files (before injection), but it would require the same code to be
duplicated over and over again. For example, every object in the UI needs code to
track whether or not it has changed (ie is it "dirty"?). All that duplicated code in our
sources would violate the Don't Repeat Yourself (DRY) rule. Instead, injecting it via
weaving into our pre-compile C# files keeps the user-facing source code clean and
uncluttered, while still allowing for really functional code that gets built.

Thinking about web architecture

15

Looking at the front end

That basically covers the back-end, or server side, of the code. What about the
client, or front end?

Our app gets a bunch of files that will be familiar to front-end web devs who use
Angular but maybe unfamiliar to winforms developers. What's in the folder?

Most of these files you don't need to worry about—they're common to the Angular
template. Karma and Protractor are testing tools—the e2e folder is for end-to-
end testing files. tsconfig and tslint are for Typescript (which we use instead of
JavaScript; Typescript compiles to JavaScript when you build). Yarn manages
packages faster than npm. And so on.

The droids you're looking for are in the \src folder. Let's take a look.

The time has come to switch from Visual Studio 2017 to Visual Studio Code. VS
Code is the free, open-source IDE from Microsoft and right now it just works a little
better on Angular apps. For one thing, it comes with a built-in Powershell terminal so
you can run Angular CLI commands like ng build.

Thinking about web architecture

16

Important folders

The folder we really care about is the app folder. The rest are:

• e2e is for the end-to-end integration tests (as opposed to unit tests).

• environments is for setting up your development and production environments
(plus any others you want)

• assets for images, wav files, etc

Thinking about web architecture

17

• Misc stuff like CSS, index.HTML, favicon, and more. Mostly this stuff we don't
need to worry about. Index.html, for example, just loads the root component—it's
not a rich web page like you might find with other templates.

In the app folder we will find our components, which is where the work is done. Each
form from our Windows forms app gets its own folder under \app\components: in
ths case there's only form1 so that's the only folder created: src\app\components\
hello\form1.

Each form gets three files: a CSS file, a typescript file, and an HTML file. They're
pretty simple:

Typescript files

The .ts file lists all the required imports to make the app work, defines this
component, exports the class, and constructs all the standard pieces a WebMAP
app needs to run:

Style sheets and HTML

The remaining two files are super simple. The css file has a class for every HTML
element, which is basically every control on the form:

Thinking about web architecture

18

Note the absolute positioning of all the elements: it's necessary to make the form
render in the browser like it looks on Windows.

It's not going to be a super-slick responsive web look and feel: it's supposed to be
a close to the Windows user interface as possible so the users/customers will not
need re-training when the app is deployed. Of course, if it makes sense for you, you
can always jack the css later to make the app look however you want.

Finally, let's look at the generated HTML:

Thinking about web architecture

19

Each control on the form gets its own HTML element tag—and they are all named
"wm-[some control type]". The ids are set to the actual object name in our source
code.

Where's Waldo?

Two things to notice in the HTML: there is no references to the Kendo framework,
and there are no references to Angular-specific attributes.

Why not?

We like Kendo and Angular very much, And I'm sure lots of other folks do as well.
But not everyone has made that particular lash-up their standard for web dev. So
one of our design goals for WebMAP5 was to de-couple the generated code from
the framework and the UI control set. We already know some additional control
libraries will be implemented (stay tuned for announcements later this year) and
at some point someone will build a case for using PrimeNG or React instead of
Angular. In the past replacing either Kendo or Angular would have meant ripping
out a whole lot of code and building multiple, parallel versions of WebMAP. With
WM5 it only means changing some config files to use different packages (once the
packages are built, of course).

Those packages hold the code that binds both Kendo and Angular to our
components. They are source code, so there is no long-term dependency on
Mobilize for your app. Over time we will be enhancing them and making those

Thinking about web architecture

20

enhancements available to our customers post-migration, so as they extend and
maintain their new apps they can continue to use the architecture and code patterns
we've created. Or, they can do something entirely different, like write more "normal"
Angular components.

That has huge benefits for our customers—not only can they switch a previously-
migrated app from one MVVM framework to another post-migration, but they
will at some point have the ability to mix and match control libraries—possibly to
implement a control from one library that isn't available in their default set.

Building the front end

Once the app has been migrated, we simply use the Angular CLI to install all the
packages (using yarn or NPM) and then do ng build. That creates the wwwroot
folder in the source tree. Then we can go back to the ASP.NET Core sln file and build
and run it from Visual Studio 2017.

And it will run perfectly so we're done, right?

Not on your life.

Unless you are migrating something as trivial as this app, there will be work. Code
that accessed the file system, or the registry, or attached hardware devices, or
invoked the Win32 API directly (unmanaged code) will have to be re-worked. You
can't just print from your app anymore; you'll have to invoke some kind of web
service that can, for example, create a PDF, store it, generate a URL and hand that
URL back to the user. The user can then download the PDF and save it or print it
from a local resource like Acrobat.

Wrap up

Moving applications from desktop to web requires solving some difficult problems:
state management, “impedence mismatch” between platforms, object lifetime,
scalability, authentication, and more. Some of it can be simplified by using patterns
like AOP. Migration of desktop apps to web using the WebMAP tooling and resulting
architecture can dramatically cut the time, cost, and risk of modernizing legacy
apps.

