
VB6 to Docker 
By John Browne 

Extinction is normal 

The word "extinction" makes me visualize a couple of dinosaurs, seeing a huge fireball 

in the sky rushing toward Earth. One says to the other, "Wonder what the hell that is?" 

The other one says, "Ah, probably nothing." 

I know a guy, call him Will, who worked at Kodak when they made the first digital 

cameras. My friend Will, kept running around Rochester saying that this was a hair on 

fire moment, because digital cameras directly threatened the film franchise that Kodak 

was built on. Kodak management--whose predecessors literally invented the consumer 

camera industry--ignored all the warning signs. Digital, they said, was inferior to film. 

Digital, they said, was expensive. There were no digital cameras, but there were billions 

of film cameras (now available at your local flea market). 

Digital will never replace film. 

Right. 

Cars will never replace buggies. Email will never replace snail mail. PCs will never 

replace mainframes. Ecommerce will never replace retail. The Cubs will never win the 

World Series. 

Running in fear 

When the iPad appeared, PC manufacturers were terrified tablets would replace PCs 

(they didn't). When smart phones appeared, camera manufacturers were terrified they 

would replace actual cameras (they haven't). 

When avocado toast appeared, everybody in their right minds said, "yuck." 

Change--change causing extinction--used to take awhile: 

 The first (steam-powered) automobile was built in 1769. 

 The first production automobile with an internal combustion engine was built 116 

years later (1885). A handful were built. 

https://www.mobilize.net/blog/vb6-to-docker
https://www.mobilize.net/blog/author/john-browne


 42 years after that, Ford had produced 1,000,000 Model Ts using the concept of 

the assembly line. 

 By 1920 the number of automobiles in the US had eclipsed the number of horse-

drawn buggies. 

 Even so, in World War II (1939-1945), Germany and the Soviet Union employed 

6 million horses for transport, mechanized transport being the exception rather 

than the rule. 

Change got quicker: 

 1946: ENIAC (first general-purpose programmable electronic computer) 

 1968: First microprocessor 

 1975: Bill Gates and Paul Allen go to MITS in Albuquerque to demonstrate 

BASIC running on a microcomputer 

 1981: IBM PC announced 

 1989: Tim Berners-Lee invents world wide web so we have a place for cat 

pictures 

 1995: I'm sitting in the middle of nowhere (Eastern Washington state, desert and 

cattle ranches) in a diner. Booth behind me are two old guys wearing Carhartts, 

ball caps with fertilizer company logos, eating lunch. And I can hear them. And 

they are talking about Windows 95. That's when the lights went on for me. 

Computing, I realized, is now ubiquitous. 

And quicker: 

 1994: First smartphone introduced (Simon Personal Communicator) 

 2007: iPhone introduced 

 2018: 36% of world population has one to watch cat videos. 

Hey, John, are you rambling or should I care? 

This is a blog series about Docker, although that might seem a reach so far. Let's bring 

it home. 



If you're reading this and you're not an immediate family member, then I have to 

assume you have legacy code. And that code is for a desktop application built with VB6, 

PowerBuilder, or even .NET/Winforms. And that application is old, big, complex, with at 

least one database behind a lot of forms and business logic that--over time--has been 

sorted out. The app works, people use it, and it's a huge liability. 

It's a liability because you've built a wonderful factory powered by steam and everyone 

else is using electricity. The people who work on steam power are getting older and 

older and are hard to find and don't work cheap anymore. And there's the daily risk of 

the damn boiler exploding, taking the whole mess with it. You could build a new 

electrified factory next door but it would bleed you dry and take forever. You could try to 

replace all the stuff in the existing factory but there are pipes running everywhere and 

valves and gauges and switches and signs that say "Never touch this!" and you don't 

know if trying will wreck everything. 

Basically you are faced with an existential threat. 

 

Ahoy! 

Here's how to keep alive. This series of blog posts is going to take a steam-powered 

application (ok, VB6) and convert it to a modern web application with RESTful 



endpoints, an Angular 6 client UI, ASP.NET Core server components, and readable 

code. Then we're going to put our whole web app into a container--Docker for Windows-

-and build it and run it locally in the container. Finally we're going to push the container 

to Azure and run it from there. 

This is like replacing the steam-powered factory with one using cold fusion, with all new 

machines. And it's going to be less risky, costly, and lengthy than any alternative. 

Why you should care about Docker 

Docker is the candle on the icing on the birthday cake. The cake? That's a modern web 

app, written in languages like C#, HTML, and TypeScript. The icing? Continuous 

integration, continuous deployment (CI/CD). These two alone are the (potentially) 

extinction-level changes sweeping contemporary software engineering. The meteor that 

wiped out Waterfall crashed a long time ago. Agile/scrum replaced it, and with that 

model came the need for better faster methods to build, test, and deploy. Web apps no 

longer depended on updates delivered via physical media or downloaded msi files; they 

could be slipstreamed into production systems at will. This created a new set of 

problems, challenges, and opportunities. It's the new growth rooted in the composting 

bodies of dead dinosaurs. 

Docker just makes it a little easier. But we'll get to that later. 

All aboard! 

So let's do this thing. Many Bothans didn't die to bring you this information, but I spent 

more time than I'd like to admit--plus a little bit of my soul--figuring all this out and I'm 

determined to share it with someone. Fortunately I have colleagues smarter than me 

who were enormous help (talking to you, Mauricio). 

So grab your favorite app, or use our sample code, and follow along as we take our 

magical mystery tour of desktop to Docker. 

VB6 to Docker Part 2 
Note: this is part 2 of a four part series. If you stumbled in here from the street, here's 

part 1 to help get you oriented.  

If you want to follow along, you can download the code here. 

https://www.mobilize.net/blog/vb-to-docker-part-2
https://www.mobilize.net/blog/vb-to-docker-part-2
https://www.mobilize.net/blog/vb-to-docker-part-2
https://www.mobilize.net/blog/vb6-to-docker
https://www.mobilize.net/blog/vb6-to-docker
https://www.mobilize.net/hubfs/SKS%20Demo%20Code.zip


What's Docker? 

Docker, in case you've been hanging out in a deep-water submersible with no internet 

connection for the past year, is a set of tools to create, manage, and run containers. 

What, you may ask, are containers? I truly have no idea, but I refer you to this Wikipedia 

article, which is fairly confusing. I like to think of them as lightweight virtual machines, 

except that they're not, actually, virtual machines. But from a standpoint of application 

hosting, they are similar to VMs...you can set them up as autonomous units with their 

own OS and app infrastructure--they can run inside any host (so you could have a Linux 

container running in Windows, or vice versa)--and they can access network ports, so 

you can get in and out. Unlike VMs, containers can spool up very quickly to make it 

easier to scale up or scale down a workload. And--perhaps best of all--you can build 

and run them on your desktop, then just move the whole lashup to a different host (like 

AWS, Azure, or a private datacenter) without worrying about something in the config 

script that breaks it. If it runs locally, it will run remotely. 

It's helpful to keep in mind that a container differs from a VM in that it (the container) 

only loads the bare minimum to do the job you've asked it for. When you set up a VM, 

you have, somewhat obviously, an entire (virtual) machine at your disposal. You have a 

complete OS with all its available services, all the I/O of the machine, full network stack-

-everything. 

But in a container, you only load what you need. So you don't get a full OS, only a 

kernel. You only get the OS services that have been provided in that kernel--for 

example, no UI framework. It's intended to be super lightweight, quick loading, and 

robust from external attacks (you can't exploit what isn't there). For that reason, you 

have to be thoughtful about what you use as a base image (typically the kernel) to 

ensure you get all the services you actually need. Of course, some additional necessary 

services might be installable as part of the container build step. 

Docker for Windows 

Docker was initially created exclusively for Linux, and relied on a number of Linux bits 

and pieces. However, since 2014 Microsoft has been steadily embracing both 

containers as a concept and Docker as a solution. We're going to use Docker for 

Windows in this demo/tutorial to containerize an ASP.NET Core web application. 

Basic workflow 

https://www.docker.com/
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://en.wikipedia.org/wiki/Operating-system-level_virtualization


For this demo, we're going to start with an ASP.NET Core web application--our 

cannonball WebMAP demo app--and run it in Docker. The app uses ASP.NET Core 

running inside .NET Framework, with Angular 6-based client/front end. You can learn all 

about the unique, simplified architecture we have pioneered here. 

Here are the steps we'll walk through: 

1. Install Docker for Windows 

2. Enable Docker support on Visual Studio 

3. Create a dockerfile in our application 

4. Publish the app 

5. Build the container instance with the published app 

6. Run the container and verify the app 

7. Push the container instance to Azure to run it from the cloud 

Install Docker for Windows 

Before we can use Docker we have to install it. Since we are running on Windows, we 

need to get the Docker Community Edition (CE)from the Docker Store. To install it you 

need Windows 10 64-bit Pro, Enterprise, or Education. Sorry, it won't run on Windows 

10 Home. And here's where I hit my first hiccup: I have VMware Workstation on my 

laptop. Docker uses Hyper-V (Microsoft's hypervisor) and VMWare doesn't. And you 

can't have two hypervisors in Windows at the same time. So to run Docker you will have 

to go into the Windows settings and turn on Hyper-V, but then you can't run VMWare 

VMs. Note: there are some home-grown solutions like a boot option. Or running Docker 

for Windows in a VMWare VM, which kind of makes my head want to explode.Google is 

your friend for this one. 

You can set Docker to start automatically or just when you need it. Note it is a Windows 

Service, so you will find it in the system tray. 

To begin, you really only need to do two things: 

https://www.mobilize.net/blog/webmap-app-architecture-part-1
https://www.mobilize.net/blog/webmap-app-architecture-part-1
https://store.docker.com/editions/community/docker-ce-desktop-windowshttps:/store.docker.com/editions/community/docker-ce-desktop-windows


 Right click the Docker icon and select Windows containers (the default is Linux). 

To run a Linux container, you'll need to switch back. You can only run one kind of 

container at a time. 

 Fire up PowerShell and start using Docker CLI commands. We'll get into that 

shortly. 

Enable Visual Studio support for Docker 

You can add Docker support for existing apps via the Add... context menu item on any 

VS project.  



 

We have to choose between Windows and Linux. 



 

When we do this for our example ASP.NET Core web app, we get exactly two changes: 

a new file ("Dockerfile") and a .dockerignore file (which we don't need to worry about). 

Let's look at the Dockerfile: 

 



Now this dockerfile is basically useless. For one thing, it doesn't specify a base image--

the necessary OS elements that are needed to run our container. Note that Microsoft 

understands this--there are too many options for Visual Studio to know what base 

image you will need, so the comment points us to this web address, which unfortunately 

isn't any help either. Microsoft has put a large number of images on the docker hub, but 

it can be tricky to figure out which one to use. Basically you make a guess, build your 

container, and see if it works. If not, try a different base image. 

The real Dockerfile 

To get our SKS demo app to run in a container, we will need ASP.NET and Windows 

Server Core. After some work by one of my more brilliant colleagues, we found that this 

base image works well: 

FROM microsoft/aspnet:windowsservercore-10.0.14393.693 

When we use the Docker Build command, Docker will begin by pulling this image from 

the Docker hub--this can take some time initially because it's a large image. Here's our 

dockerfile that will build a container where SKS can run: 

https://aka.ms/containercompat
https://hub.docker.com/r/microsoft/


 

The full capabilities and syntax of a Docker file are, as they say, beyond the scope of 

this article. Instead, here are a couple of notes: 

 escape=` means we are using the ` character as a line-continuation or escape 

character. Docker uses the / character as escape by default, so every slash used 

as a path name would have to be escaped (ie /bin/Release would have to be 

//bin//Release). Instead we use ` so we can specify /bin/Release. Confused yet? 

 Notice we can invoke PowerShell and run PS commands. This is pretty useful. 

When you see the file names and paths, bear in mind those refer to the 

container's file system, not the physical hard drive on your hosting machine. 

 Dockerfile commands are shown in UPPERCASE by convention. Notice we only 

use a few: FROM, SHELL, RUN, EXPOSE, COPY. Most of these are self-

explanatory; "EXPOSE 80" opens Port 80 for our HTTP use with our app. You 



could expose any port you want--again, you are opening a port on the container, 

not on your host device. 

Where does my app go? 

Although it can be done, we're not using Docker to compile and build our application. 

Normally that is done on a build server after a commit and successful test run. Then the 

resulting app--following a successful build--is published to a hosting site. We're going to 

follow a similar workflow: the app is in Visual Studio, where I will build it on my laptop. 

But at the end of the build, let's have Visual Studio publish the app to a specific location, 

in this case [my working directory]\bin\release\publishoutput. That way the final step in 

our Dockerfile can copy all the contents of that directory to the /web-app directory in the 

container. 

Next: Build and run 

Part 3 of this series will show how we can build the container and then run the app 

locally. 

VB6 to Docker Part 3 
(Note: this is the part 3 in a four part series--if you're just starting here I would urge you 

to go back to Part 1 and 2 and read them first. 

Ok, let's recap briefly. 

We know what Docker is: a container engine. And we know containers are a super-

lightweight, self-contained, and portable way to run apps. And we know we tell Docker 

what to do with a dockerfile. 

Building our image 

Notice I didn't write "building our app." Although you can run a compiler--and thus a 

build step--inside a container, it's not really a normal approach. As I said earlier, the 

usual workflow is to automate the build and release cycle on a dedicated build server (a 

key part of CI/CD). The "build" we're doing here is building an image of our app that can 

run inside a Docker container. 

https://www.mobilize.net/blog/-vb-to-docker-part-3
https://www.mobilize.net/blog/-vb-to-docker-part-3
https://www.mobilize.net/blog/vb6-to-docker
https://www.mobilize.net/blog/vb-to-docker-part-2


Docker has a command line interface (CLI) available from PowerShell. Once you've 

ensured that Docker for Windows is actually running (check the system tray), you can 

start a PS session and start typing Docker commands. You can always type Docker --

help and get a list of all the available commands, and for each command you can get a 

little more detailed help, like with Docker build --help to get help on the build command. 

But for more indepth information you'll have to go to the official documentation, or get a 

copy of Elton Stoneman's excellent book Docker on Windows: From 101 to production 

with Docker on Windows, available from the publisher or Amazon.com. 

Each build fetches the base images you have specified in the dockerfile, and if 

necessary unpacks and runs installers specified in the base image. A Docker image is 

typically about 10GB, so you can spend quite a bit of time downloading the initial parts 

for your first build. However, when you have gone through that once you can modify 

your build options and even your dockerfile without having to download the same pieces 

again. Of course, if you change your base image, you may find yourself waiting for large 

downloads all over again. 

Let's build our image for SKS. First, we have to set the current path in our PS instance 

to wherever the dockerfile for this app is. In this case it's in [appname]\upgraded. The 

command we will use is 

docker build -t web-app:latest . 

The -t switch tells Docker that we want to use a name for this image, basically a name 

for the image we can refer to. The format is name:tag, where the tag is optional. In this 

case the image name (tag) is web-app, although it could be anything we want it to be. 

The :latest tag is optional and used to clarify which version of the app is in the container 

(consider things like "stable," "nightly," or "bug-infested.") Finally, the "." at the end tells 

Docker to use the current directory as the context for the image. 

When we run the build command, Docker processes all the steps in the dockerfile, 

starting with the FROM and ending with the COPY. As you'll see from the output, it lets 

you know how the progress is going. 

https://www.packtpub.com/
https://read.amazon.com/kp/embed?asin=B0711Y4J9K&preview=newtab&linkCode=kpe&ref_=cm_sw_r_kb_dp_f0e.BbRP0PB2Q


 

This build was fast, but the first time it was slow, because downloading and installing 

the windowsservercore image takes awhile. Take a nap, practice juggling, or just do 

something else. It will be a minute. 

If the build doesn't work, check the steps to see where it failed, then go fix your 

dockerfile and try again. 



Checking and running our image 

We can make sure the build was good by running the Docker images command: 

 

Notice the first line--this is the image we just built. Ignore the rest--they are other images 

I have created in the past. Notice that each one is about 10GB of disk space--they will 

stick around on your hard drive until you remove them with the docker system 

prunecommand or the docker rmi [image] command. 

So we have our image, so what? Well, now we run it, a step which will cause Docker to 

create a new container and execute the image within the container. Let's do it: 

 

Hmm, that was kind of anticlimatic. The relevant parts of the command are the -d switch 

(which says to run the container in the background and print out the container ID) and 

the image name (7253). If you look at the screenshot from the docker images 

command, above, you'll see the image ID is 725372cde01e. We can usually get docker 

to act on an image by specifying just enough of that value to be unique. In this case "72" 

threw an error, but "7253" was enough to let Docker know what image I wanted to run. 

Go figure. 

We can now verify that the container is alive and running with the docker ps command: 



 

This command lists all running containers. If you've been messing around with Docker 

for awhile, try docker ps -a which will list ALL containers: 

 

What's useful here is the the column PORTS (80/tcp) and NAMES (gracious_mendel). 

We can access our container via good old TCP port 80, and get information about it 

using the name gracious_mendel (I'm delighted by the algorithm for naming containers, 

as it uses a random adjective and the name of a famous scientist. This one immediately 

took me back to a genetics class at university, putting fruit fly generations to sleep with 

chloroform to look at them under a microscope.) 

Small detour 

I'm writing this paragraph a day after writing the above one. So look what happens: 

docker inspect gracious_mendel 



 

Notice under State that Running is "false" and "status" is "exited." Last night I shut down 

the container with a docker stop command. 

If I try to start it, I can't--at least not with the old name:  

 

The name gracious_mendel applied to a running instance of the container. Once I stop 

the container, that name won't work anymore. I have to use the image name to start it, 

and I will get a new instance name (in this case "sleepy_bartik"). Goodbye Gregor: 

 

Let's inspect this instance:  

docker inspect sleepy_bartik 



 

You can see that this one may be sleepy but it's also running. The docker inspect 

command provides a ton of information from some XML data. You can use go 

templates to do interesting things with it. What I want at the minute is the public IP 

address to access it via TCP port 80. Here's a go template to print the IP address: 

docker inspect -f ' ' sleepy_bartik 

and it will print 

172.19.209.167 

 

I want some fish 

Hey, I have an app for that. Let's type our IP address into a browser: 

https://golang.org/pkg/text/template/
https://golang.org/pkg/text/template/


 

Ok, it works. Here's our Salmon King Seafood order form running as a web app in 

localhost, talking to the IP address of our container. 



Next: let's get it working on Azure. 

VB6 to Docker Part 4 
Almost done. 

If you've been reading along, you know we got Docker for Windows running, created a 

dockerfile in Visual Studio, and published our app to a directory where Docker could find 

it. Running our web app in the container allows us to access it via localhost:80 and it 

runs fine.  

If you're starting here, you might want to go back to Part 1 and read from the beginning.  

Now that our app is running in a local container, we can move that container image 

anywhere the Docker for Windows environment is available and run it there. The beauty 

of that--and I can't stress this enough--is that the image, being completely self-

contained, will run anywhere the service is available. So there's basically no way to 

hose it when you put it into production, or move it from one deployment environment to 

another.  

What's in the container? 

As a refresher, let's look at the contents of our newly created container. 

https://www.mobilize.net/blog/vb-to-docker-part-4
https://www.mobilize.net/blog/vb6-to-docker-part-4
https://www.mobilize.net/blog/vb6-to-docker


 

 

The container instance runs inside the Docker service, which in turn runs on--in this 

particular case--a Windows OS. Notice I didn't write Windows Server or Windows 10. 

Any Windows OS that the Docker service can run on can also run this container. In the 

case of Docker for Windows Community Edition, it has to run on Windows 10 64-bit Pro, 

Enterprise, or Education (not Home). But the container can run on any supported 

Windows OS (as we'll see when we push it to Azure). 

Why Azure? 

No particular reason, except it's a little easier/simpler to get this lashup running on 

Azure than it is on AWS, and I wanted to close this thread with moving the app to the 

cloud. In future if there is interest I'll do one on AWS. But this time is Azure. 

Azure gives you--in its typically mind-numbingly confusing way--two different ways to 

run a Docker container. There could be 20, who knows? The one I found first is to use a 

container registry, but you can also run container instances. At least I think so. Who 

knows? So for this tutorial, we will use container registries. Supposedly this is designed 



to support swarms, which is a plurality of Docker containers (like a murder of crows or 

a parliament of owls I suppose). As mentioned earlier, one of the benefits of containers 

over VMs is how much faster you can spool one up, so having a swarm of identical 

containers lets you exercise some of that vaunted cloud elasticity in a more responsive 

way. 

Creating a registry 

First you need an Azure account--and there are an equally mind-numbing number of 

choices in that regard. You're on your own, Bucky. Once you are logged in, either go to 

your resource group or create a resource group (a billing unit) and click Add. So many 

choices! Like when I go to buy earrings for my wife--they show me like 500 pairs and 

eventually I just close my eyes and point. So in the search box, type "container registry" 

and you find it: 

 

When you click on it, you get a nice explanation from Microsoft about what this is, and a 

button to create one. Here's what they say: 

Azure Container Registry is a private registry for hosting container images. Using the 

Azure Container Registry, you can store Docker-formatted images for all types of 

container deployments. Azure Container Registry integrates well with orchestrators 



hosted in Azure Container Service, including Docker Swarm, DC/OS, and Kubernetes. 

Users can benefit from using familiar tooling capable of working with the open source 

Docker Registry v2. 

Use Azure Container Registry to: 

 Store and manage container images across all types of Azure deployments 

 Use familiar, open-source Docker command line interface (CLI) tools 

 Keep container images near deployments to reduce latency and costs 

 Simplify registry access management with Azure Active Directory 

 Maintain Windows and Linux container images in a single Docker registry 

Clicking "Create" takes you to a form where you have to specify the name, resource 

group, and some other stuff. For SKU select "Standard." 



 

Notice in tiny little letters under the Registry Name field is .azurecr.io. Your container 

registry will get assigned a login server named <registry name>.azurecr.io. Since I 

created a registry called JBDemo (such hubris), my login server name is 

jbdemo.azurecr.io. You'll need this name later to push the container up to Azure. 

Here's what you should see next: 



 

If you don't see this, just go to your resource group (mine is called "Marketing") and 

you'll see all your resources: 



 

You can see there is one container registry (JBDemo) and three container instances 

(jbsks, sksazure, and sksweb). Click on any of these to open it up--I'm going to open my 

container registry. And you'll notice there are not containers, nor is there any obvious 

way to upload a container.  

Yeah, that stalled me for awhile.  

Pushing the Docker container to Azure 

Ok, now we have to go back to our PowerShell window where we ran our container. At 

this point I don't really need this container running on my local machine anymore, so I 

can stop it with this command: 

docker container stop gracious_mendel 



Docker will respond with the name of the container ("gracious_mendel") indicating it is 

stopped. I can confirm that by running the Docker ps command, which will show no 

running containers: 

 

Now we are ready to push this container image up to Azure. But how will Docker know 

which image to push? The answer is the tag command:  

docker tag web-app jbdemo.azurecr.io/repos/sks:latest 

 

All this command does is take the image called web-app (see the output of the Docker 

images command above) and associate it with a name on my container registry, in the 

form of <server name><repo name><container name:tag>. 

Ok, let's have Docker copy this image to our container registry: 

 



Assuming no errors, you should see something like the screenshot above. When it's 

finished, go back to your Azure container repository and click "Repositories" from the 

side bar menu: 

 

There are a number of options here like access control or webhooks. I'll leave that for 

you to experiment with. For now, we want to look at our repo--no worry that you didn't 

create a repository in Azure, the push command created one for you: 



 

There's nothing magical about the name repos/sks: it's just a name. Let's click on it: 

 

And here we'll see all the tags we've used for this repo. Could be "nightly" or "latest" or 

"foobar", doesn't matter.  

Running the Docker container in Azure 



All we have to do is right click on the "latest" tag (or left click on the three dots on the 

right) and select "Run instance." 

 

That opens a config screen: 



 

Notice the whinging about my garbage name. I did that so you could see the rules: only 

lowercase letters, no spaces. Seems pretty restrictive but there it is. Be sure to select 

Windows as the OS type and Yes for Public IP address. For some reason you have to 

specify the Resource Group again, so pick the one you started with (in my case it's 

Marketing). 

Now go get a cup of coffee, or your beverage of choice. This will take a few minutes. 

Eventually in the Alarm area (the bell icon top right) you will get a notification that the 

deployment is successful. If you then go to the instance--go back to your resource 

group and find the instance, like below (it's called blogdemo): 



 

And there it is. Let's click on it to get the public IP address:  

 

In addition you have a control to stop, delete, or restart the container. Let's go to a 

browser and connect to this IP address: 



 

and there's our app. Since I literally never touched the source code from my laptop to 

Azure, I don't need any tests to know this is a good build--well, assuming the version on 

my laptop was good, this one will be identical--because it's bit for bit identical. And that's 

the coolness of containers.  



Recap 

We began with something horrifying yet common: a VB6 desktop app still in use. We 

made it a modern web app (using WebMAP) with Angular 6 for the client and ASP.NET 

Core on the server side, with all business logic intact. Then we put that whole enchilada 

into a Docker container, ran it locally, then pushed it to Azure and ran it there.  

The reasons for moving off the desktop to the web just get stronger. And CI/CD is--

when you really get it--one of the best. But you can't do CI/CD with a desktop app, not 

really. And containers--like Docker--make CI/CD so much easier, safer, and more 

reliable. But you have to have a web app. So take another look at WebMAP, because 

every day it makes it a little easier to get off the desktop and into the 21st century. 

 Topics: Docker, containers, webapps 

 

https://www.mobilize.net/webmap
https://www.mobilize.net/webmap
https://www.mobilize.net/blog/topic/docker
https://www.mobilize.net/blog/topic/containers
https://www.mobilize.net/blog/topic/webapps

